Toggle light / dark theme

Gas accidents such as toxic gas leakage in factories, carbon monoxide leakage of boilers, or toxic gas suffocation during manhole cleaning continue to claim lives and cause injuries. Developing a sensor that can quickly detect toxic gases or biochemicals is still an important issue in public health, environmental monitoring, and military sectors. Recently, a research team at POSTECH has developed an inexpensive, ultra-compact wearable hologram sensor that immediately notifies the user of volatile gas detection.


[Professor Junsuk Rho’s research team at POSTECH develops wearable gas sensors that display instantaneous visual holographic alarm.].

TOKYO (Reuters) — What would society look like if cyborg body parts were freely available for use like roadside rental bicycles? Masahiko Inami’s team at the University of Tokyo have sought to find out by creating wearable robotic arms.

Inami’s team is developing a series of technologies rooted in the idea of “jizai”, an Japanese term that he says roughly denotes autonomy and the freedom to do as one pleases.

The aim is to foster something like the relationship between musician and instrument, “lying somewhere between a human and a tool, like how a musical instrument can become as if a part of your body.”

A research team at the University of Tokyo is exploring the advancement of wearable robotics. Jizai Arms is a system of supernumerary robotic limbs. Up to six of these arms can be worn and controlled by the user. The limbs allow the wearer to attach, detach, replace or edit the arms. This was designed to enable social interaction between wearers to support human beings acting with robots and AIs while maintaining a sense of self-awareness and widening the possibility of human actions.

Mashable is your source for the latest in tech, culture, and entertainment.

Follow us:
Check out https://mashable.com/
Facebook: https://www.facebook.com/mashable.
Twitter: https://twitter.com/mashable.
Instagram: https://www.instagram.com/mashable

The rapid development of wearable electronics requires its energy supply part to be flexible, wearable, integratable and sustainable. However, some of the energy supply units cannot meet these requirements at the same time, and there is also a capacity limitation of the energy storage units, and the development of sustainable wearable self-charging power supplies is crucial. Here, we report a wearable sustainable energy harvesting-storage hybrid self-charging power textile. The power textile consists of a coaxial fiber-shaped polylactic acid/reduced graphene oxide/polypyrrole (PLA-rGO-PPy) triboelectric nanogenerator (fiber-TENG) that can harvest low-frequency and irregular energy during human motion as a power generation unit, and a novel coaxial fiber-shaped supercapacitor (fiber-SC) prepared by functionalized loading of a wet-spinning graphene oxide fiber as an energy storage unit. The fiber-TENG is flexible, knittable, wearable and adaptable for integration with various portable electronics. The coaxial fiber-SC has high volumetric energy density and good cycling stability. The fiber-TENG and fiber-SC are flexible yarn structures for wearable continuous human movement energy harvesting and storage as on-body self-charging power systems, with light-weight, ease of preparation, great portability and wide applicability. The integrated power textile can provide an efficient route for sustainable working of wearable electronics.

Humane, the top-secret tech startup founded by ex-Apple vets Imran Chaudhri and Bethany Bongiorno, just showed off the first demo for its projector-based wearable at a TED talk. Axios’ Ina Fried broke the news, and Inverse has seen a recording of the full TED talk given by Chaudhri.


Humane founder and ex-Apple designer Imran Chaudhri shared the first look at the company’s AI-powered wearable projector. Here’s an exclusive first glimpse of Humane’s screen-less iPhone killer in action and details on its many functions including making and receiving phone calls, summarizing notifications, and translating your voice in real-time.

A team of researchers has developed a new method for controlling lower limb exoskeletons using deep reinforcement learning. The method entitled, “Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning,” published in the Journal of NeuroEngineering and Rehabilitation, enables more robust and natural walking control for users of lower limb exoskeletons.

While advances in wearable robotics have helped restore mobility for people with lower limb impairments, current control methods for exoskeletons are limited in their ability to provide natural and intuitive movements for users. This can compromise balance and contribute to user fatigue and discomfort. Few studies have focused on the development of robust controllers that can optimize the user’s experience in terms of safety and independence.

Existing exoskeletons for lower limb rehabilitation employ a variety of technologies to help the user maintain balance, including special crutches and sensors, according to co-author Ghaith Androwis, Ph.D., senior research scientist in the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation and director of the Center’s Rehabilitation Robotics and Research Laboratory. Exoskeletons that operate without such helpers allow more independent walking, but at the cost of added weight and slow walking speed.