Toggle light / dark theme

Cobalt-free batteries could power cars of the future

Many electric vehicles are powered by batteries that contain cobalt — a metal that carries high financial, environmental, and social costs.

MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used in lithium-ion batteries).

In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.

Study probes unexplored combination of three chemical elements for superconductivity

Skoltech researchers and their colleagues from MIPT and China’s Center for High Pressure Science and Technology Advanced Research have computationally explored the stability of the bizarre compounds of hydrogen, lanthanum, and magnesium that exist at very high pressures. In addition to matching the various three-element combinations to the conditions at which they are stable, the team discovered five completely new compounds of hydrogen and either magnesium or lanthanum only.

Published in Materials Today Physics, the study is part of the ongoing search for room-temperature superconductors, the discovery of which would have enormous consequences for power engineering, transportation, computers and more.

“In the previously unexplored system of hydrogen, lanthanum, and magnesium, we find LaMg3H28 to be the ‘warmest’ superconductor. It loses below −109°C, at about 2 million atmospheres—not a record, but not bad at all either,” the study’s principal investigator, Professor Artem R. Oganov of Skoltech, commented.

Biggest aircraft since the Hindenburg cleared for test flights

Airships are essentially rigid, steerable balloons that fly because they’re filled with a lighter-than-air gas. The Hindenburg is probably the most well-known example of an — and also the most-well known example of why filling them with flammable hydrogen is dangerous.

Brin’s plan is to fill hiss with non-flammable helium and then use them to transport tons of cargo hundreds of miles efficiently and cleanly. He also hopes to use them for humanitarian missions, delivering supplies and personnel to places that are hard to access by road.

The Pathfinder-1: In 2015, Brin founded a startup, LTA Research, to help him reach this goal, and the team came up with the Pathfinder-1, a 400-foot-long prototype with electric motors, a carbon-fiber skeleton, and an ultra-light synthetic cover.

BMW wants humanoid robots to build its cars

BMW wants humanoid robots to build its cars, evidenced by a partnership with a robotics startup that it signed today.

BMW has partnered with Figure in its first partnership since the company was founded two years ago. The German automaker plans to launch a small, controlled launch of humanoid robots in its production facilities, potentially expanding to more units if performance targets are met.

The humanoid robots will initially be launched out of the BMW facility in Spartanburg, South Carolina, which employs 11,000 people.

Microsoft AI discovers 18 new battery materials in two weeks

Using AI and cloud computing, Microsoft was able to identify promising new battery materials for the Department of Energy (DoE) — in a fraction of the time it would usually take.

The challenge: Batteries are an essential part of the clean energy future. We need them to power electric vehicles and to store energy from solar and wind.

Currently, lithium-ion batteries are our best option for both of these uses, but they aren’t ideal. Because lithium is relatively scarce, it’s also expensive, and the metal is often unethically mined using child labor and environmentally destructive processes.

Revolutionizing Electric Car Batteries: MIT’s Cost-Efficient, Cobalt-Free Solution

“I think this material could have a big impact because it works really well,” said Dr. Mircea Dincă. “It is already competitive with incumbent technologies, and it can save a lot of the cost and pain and environmental issues related to mining the metals that currently go into batteries.”


Electric vehicles (EVs) have become a household name in the last few years with several companies fighting to compete in the everchanging EV landscape as EV technology continues to improve in cost, efficiency, and the materials used to manufacture the batteries responsible for sustaining this clean energy revolution. While EV batteries have traditionally used cobalt for their battery needs, a recent study published in ACS Central Science discusses how organic cathode materials could be used as a substitute for cobalt for lithium-ion batteries while potentially offering similar levels of storage capacity and charging capabilities, as cobalt has shown to be financially, environmentally, and socially expensive.

“Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices,” said Dr. Mircea Dincă, who is a W.M. Keck Professor of Energy at MIT and a co-author on the study.

For their study, the researchers constructed a layered organic cathode comprised of cellulose, rubber, and other Earth-based elements. The team then subjected their organic cathode to a variety of tests, including energy storage, delivery, and charging capabilities. In the end, they found their cathode’s capabilities exceed most cobalt-based cathodes, including a charge-discharge time of 6 minutes. Additionally, while battery cathodes are known for significant wear and tear due to cracking from the flow of lithium ions, the researchers noted that the rubber and cellulose materials helped extend the battery cathode’s lifetime.

Tesla Model Y Powered By Solar Panels On Its Roof — Smart Move?

An intrepid DIY Tesla Model Y owner has done what many dream of doing — directly powered his Tesla with solar panels. That’s right, not happy with simply powering his car with house rooftop solar panels, he’s doing it with a solar panel array on the roof of his crossover.

This Tesla Model Y Performance owner created a folding solar array capable of charging 20-60mi per day via a 2000W-4000W system.

500-mile Tesla Semi starts delivery, features 1-megawatt charging

Tesla late on Thursday started customer deliveries of its semi-trailer truck, which is dubbed the Semi.

The first customer was Pepsi, which placed an order for 100 of the Class 8 trucks following the debut in 2017. Budweiser and Walmart are among the other customers for the fully electric semi truck which features a central driving position, just like the McLaren F1 supercar.

Waymo’s Driverless Cars Are Hitting the Highway Sans Safety Drivers in Arizona

To back up the decision, Waymo pointed to its safety record and history building and operating self-driving trucks on highways. (The company shuttered its self-driving truck project last year to focus on taxis.) Including highways should also decrease route times for riders—especially from the airport—with some rides taking half the time.

Although highways are simpler to navigate than city streets—where cars contend with twists, turns, signs, stoplights, pedestrians, and pets—the stakes are higher. A crash at 10 or 20 miles per hour is less likely to cause major injury than one at highway speeds. And while it’s relatively straightforward (if less than ideal) for a malfunctioning robotaxi to stop or pull to the side of the road and await human help in the city, such tactics won’t do on the highway, where it’s dangerous for cars to suddenly slow or stop.

But learning to drive on the highway will be a necessary step if robotaxis are to become an appealing, widely used product. After years of testing, the question of whether companies can build a sustainable business out of all that investment is increasingly pressing.