Toggle light / dark theme

Great work by my friends at ORNL.


In a review paper published in ACS Nano, Olga Ovchinnikova and colleagues provide an overview of existing paths to 3D materials, but the ultimate goal is to create and customize material at the atomic scale. Material would be assembled atom by atom, much like children can use Legos to build a car or castle brick by brick. This concept, known as directed matter, could lead to virtually perfect materials and products because many limitations of conventional manufacturing techniques would be eliminated.

“Being able to assemble matter atom by atom in 3D will enable us to design materials that are stronger and lighter, more robust in extreme environments and provide economical solutions for energy, chemistry and informatics,” Ovchinnikova said.

Fundamentally, directed matter eliminates the need to remove unwanted material by lithography, etching or other traditional methods. These processes have served society well, researchers noted, but the next generation of materials and products require a new approach.

Read more

Yale researchers have devised a method that brings marketable Li-O2 batteries closer to reality, improving both the batteries’ performance and the ability to study them.

In recent years, lithium-oxygen batteries have intrigued researchers with their potential. They can store at least two to three times the energy as lithium-ion batteries can, which are the current standard for consumer electronics, so laptops could theoretically run longer on a single charge and electric cars would drive farther.

But they’re not quite there yet. For now, Li-O2 batteries operate sluggishly and have short lives. Compounding matters, it’s hard to get a sense of how to fix that because figuring out the exact nature of their chemistry has proved tricky.

Read more

There are three buckets.

There are three buckets of jobs right now, and each one will be affected by artificial intelligence. So says Clara Shih, CEO of Hearsay Social and a director with Starbucks, during a conversation on Tuesday at Fortune Brainstorm Tech in Colorado.

The first bucket, Shih says, are the jobs that almost certainly will disappear as AI and machine learning technologies continue to evolve and become more prevalent. This includes things like drivers (thanks to autonomous vehicles), lower-skilled manufacturing jobs (humans out, robots in), and certain research functions (paralegals, etc.).

Read more

article_rollsroyceautonomouscargo-970x350

“Ten years ago the very idea that you could manage your life through a small glass screen, was considered almost impossible. Now few of us would want to be without one. Two years ago talk of intelligent ships was considered by many as a futuristic fantasy. Today, the prospect of a remote controlled ship in commercial use by the end of the decade is a reality.”

Read more

In just a few years, we could see an electric car on the market that doesn’t need a charging station to ‘fuel up.’

The biggest apparent stumbling blocks for electric vehicles (EVs) seems to be their range — the distance that can be driven between charging — and the time it takes for an EV battery to be charged. When competing against gas cars, which can be filled up in just a few minutes, and can cover a range of several hundred miles per tank, the idea of having a limited range and a longer ‘fueling’ time with an EV isn’t one that most of us are comfortable with. And when considering the easy availability of fuel from the vast number of gas stations (as opposed to the EV charging stations that are few and far between in most areas), switching from gas to electric mobility is a bit of a stretch for many people (not even taking into account the higher cost for EVs).

However, as costs go down, and as EV ranges increase (along with the growing numbers of dedicated EV charging stations), electric transport options will start to become more and more desirable (especially in times of rising gas prices), but will still most likely need to be tethered to charging points, unless the next generation of electric cars follows in the footsteps of one Chinese company.

Read more

BAE systems and a professor at Glasgow University have revealed a way to really grow drones with an advanced form of chemical 3D printing.

The news has already swept the mainstream news sites, even though this is little more than a theoretical exercise right now. Professor Lee Cronin, the man behind the concept, freely admits that he has a mountain to climb to turn this dream into a reality.

The video, then, which depicts a pair of printer heads laying the absolute basics in a vat before the drone literally grows from almost nothing, is really a pipe dream right now.

Read more