Toggle light / dark theme

Thermal evaporation emerges as a promising strategy for scalable solid-state battery production

Solid-state lithium batteries are promising energy storage solutions that utilize solid electrolytes as opposed to the liquid or gel electrolytes found in traditional lithium-ion batteries (LiBs). Compared to LiBs and other batteries that are used worldwide, these batteries could attain significantly higher energy densities of more than 500 Wh/kg−1 and 1,000 Wh/l−1, which could be advantageous for powering electric vehicles and other electronics for longer periods of time.

Despite their possible advantages, existing solid-state lithium batteries exhibit significant limitations that have so far prevented their large-scale deployment. These include the active lithium loss that can occur while the batteries are charged and discharged, which can reduce their efficiency and overall performance.

This loss of lithium is caused by an inhomogeneous lithium plating. Devising effective strategies and thin lithium metal foils that could limit the loss of lithium in solid-state batteries is thus a key goal for the energy research community.

The Magnetic North Pole Has Officially Changed Position

It’s time to recalibrate the navigation systems on ships, airplanes, and (given the time of year) Santa’s sleigh: the position of the magnetic North Pole is officially being changed, continuing its shift away from Canada and towards Siberia.

Experts from the US National Oceanic and Atmospheric Administration (NOAA) and the British Geological Survey (BGS) have joined forces – as they do every five years – to produce a new, more accurate World Magnetic Model (WMM).

While the geographical North Pole stays fixed in place (at the very summit of the Earth’s rotational axis), the WMM pinpoints the magnetic North Pole – where Earth’s magnetic field points straight down, a perfectly vertical magnetic field.

Laser-based artificial neuron mimics nerve cell functions at lightning speed

In-plane magnetic fields are responsible for inducing anomalous Hall effect in EuCd2Sb2 films, report researchers from the Institute of Science Tokyo. By studying how these fields change electronic structures, the team discovered a large in-plane anomalous Hall effect.

These findings, published in Physical Review Letters on December 3, 2024, pave the way for new strategies for controlling electronic transport under magnetic fields, potentially advancing applications in .

The Hall effect is a fundamental phenomenon in material science. It occurs when a material carrying an electric current is exposed to a magnetic field, producing a voltage perpendicular to both the current and the magnetic field. This effect has been extensively studied in materials under out-of-plane magnetic fields. However, research on how in-plane magnetic fields induce this phenomenon has been very limited.

BYD delivers 600 MWh of batteries for solar-plus-storage project in Chile

Grenergy, a Spanish independent power producer focused on the development of PV, wind, and energy storage projects, has announced the arrival of 105 BYD batteries at the port of Iquique, Chile.

Grenergy said that the Chipol Guangan cargo ship, arriving after a 42-day journey from Dachan, China, has delivered 1,050 MC Cube ESS battery modules with a total storage capacity of 600 MWh. The modules will support the Oasis de Atacama solar-plus-storage project in Chile.

NASA and SpaceX Set To Unlock the Universe’s Secrets With SPHEREx Launch in Early 2025

NASAs SPHEREx observatory will lend insight into what happened after the Big Bang, measure the glow of galaxies near and far, and search the Milky Way for building blocks of life.

NASA and SpaceX are planning to launch the SPHEREx astrophysics observatory in late February 2025. SPHEREx, which stands for Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer, will lift off aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California.

Roughly the size of a subcompact car, SPHEREx will enter a polar orbit around Earth. From there, it will map the entire sky in 3D by capturing images in every direction, similar to scanning the inside of a globe. The resulting map will feature hundreds of millions of stars and galaxies, displayed in 102 distinct colors, each representing a unique wavelength of light.

This Programmer Ran an Augmented Reality Game on a 2007 Nokia Phone

For those unaware, Whisk3D (original name Blendersito) is Dante’s Symbian-powered version of Blender, which he has been developing since late 2022. The app allows users to upload and model 3D characters on the phone, design game level assets, extrude vertices and edges, create planes, and even connect the phone to a monitor and keyboard for more convenient use.

In a true Blender fashion, Dante’s Whisk3D is open-source and can be accessed via the creator’s GitHub page. You can also support Dante here and check out more jaw-dropping experiments with Nokia-ran Blender over here.

/* */