Menu

Blog

Archive for the ‘transportation’ category: Page 444

Jan 29, 2019

Business Forum: Photons are good business — An interview with Akira Hiruma

Posted by in categories: bioengineering, business, transportation

Early November 2018, Conrad Holton visited Japan at the invitation of Hamamatsu Photonics to attend the three-day Photon Fair, the company’s big event looking at its technologies and vision for the future. The Fair is held every five years near its headquarters in Hamamatsu City, about 150 miles southwest of Tokyo. In addition to thousands of customers, suppliers, and students who attended, the event was open to the public for one day to show the many technologies just emerging from the company’s research labs and how these technologies might impact fields ranging from the life sciences to transportation and manufacturing.


An interview with the CEO of Hamamatsu Photonics shows how an engineering company with a singular focus on photonics can succeed.

Read more

Jan 29, 2019

Artificial Intelligence and the Starship

Posted by in categories: robotics/AI, space, transportation

The imperative of developing artificial intelligence (AI) could not be more clear when it comes to exploring space beyond the Solar System. Even today, when working with unmanned probes like New Horizons and the Voyagers that preceded it, we are dealing with long communication times, making probes that can adapt to situations without assistance from controllers a necessity. Increasing autonomy promises challenges of its own, but given the length of the journeys involved, earlier interstellar efforts will almost certainly be unmanned and rely on AI.

The field has been rife with speculation by science fiction writers as well as scientists thinking about future missions. When the British Interplanetary Society set about putting together the first serious design for an interstellar vehicle — Project Daedalus in the 1970s — self-repair and autonomous operation were a given. The mission would operate far from home, performing a flyby of Barnard’s Star and the presumed planets there with no intervention from Earth.

We’re at an interesting place here because each step we take in the direction of artificial intelligence leads toward the development of what Andreas Hein and Stephen Baxter call ‘artificial general intelligence’ (AGI), which they describe in an absorbing new paper called “Artificial Intelligence for Interstellar Travel,” now submitted to the Journal of the British Interplanetary Society. The authors define AGI as “[a]n artificial intelligence that is able to perform a broad range of cognitive tasks at similar levels or better than humans.”

Continue reading “Artificial Intelligence and the Starship” »

Jan 27, 2019

Microsoft, MIT help self-driving cars learn from AI ‘blind spots’

Posted by in categories: robotics/AI, transportation

A collaboration of researchers from MIT and Microsoft have developed a system that helps identify lapses in artificial intelligence knowledge in autonomous cars and robots. These lapses, referred to as “blind spots,” occur when there are significant differences between training examples and what a human would do in a certain situation — such as a driverless car not detecting the difference between a large white car and an ambulance with its sirens on, and thus not behaving appropriately.

Read more

Jan 27, 2019

‘Build the wall’ with fiber optics

Posted by in categories: materials, transportation

A concrete or steel wall along the southern border of the U.S. is not impenetrable; daily news programs show how concrete walls are burrowed under or driven over with car carriers and hydraulic ramps, while steel walls are breached with grappling hooks and inexpensive metal saws. And while a fiber-optic fence is also vulnerable to a physical cut, it can be discretely buried or placed along existing infrastructure, and (unlike concrete or steel) can fundamentally detect the location of a cut with high accuracy so that border patrol agents can be dispatched to understand the breach and apprehend the humans (easily distinguished from animals) crossing over the fence.


Let’s put our money and photonics technology to more effective use.

Read more

Jan 25, 2019

Nanotechnology enables engineers to weld previously un-weldable aluminum alloy

Posted by in categories: nanotechnology, transportation

An aluminum alloy developed in the 1940s has long held promise for use in automobile manufacturing, except for one key obstacle. Although it’s nearly as strong as steel and just one-third the weight, it is almost impossible to weld together using the technique commonly used to assemble body panels or engine parts.

Read more

Jan 22, 2019

Airbus wants to reinvent aircraft design with quantum computing challenge

Posted by in categories: computing, particle physics, quantum physics, transportation

Aeronautics giant Airbus today announced that it is creating a global competition to encourage developers to find ways quantum computing can be applied to aircraft design.

Quantum computing is one of many next-generation computing architectures being explored as engineers worry that traditional computing is reaching its physical limits.

Computers today process information using bits, either 0s or 1s, stored in electrical circuits made up of transistors. Quantum computers harness the power of quantum systems, such as atoms that can simultaneously exist in multiple states and can be used as “quantum bits” or “qubits.” These can theoretically handle far more complex calculations.

Continue reading “Airbus wants to reinvent aircraft design with quantum computing challenge” »

Jan 20, 2019

VocativVideosBillboards Of The Future Might Be Floating In The Night Sky

Posted by in categories: space, transportation

Forget highway billboards… the future of ads might be floating in SPACE.

Read more

Jan 18, 2019

The Lunar Industrial Facility and Orbital Shipyards; How to Get There

Posted by in categories: policy, space, transportation

A Lunar Industrial Facility (LIF). Yes, a Lunar Industrial Facility. Science fiction you might say. Impossible you retort. Too expensive even if it could be done might be your rejoinder. We don’t have the technology, could be another rhetorical dismissal. These are all responses those who do not live and breath this every day may have, but these are reactionary responses that do not reflect where we are in the closing years of the second decade of the twenty first century. In this missive, which is a companion to a space policy paper released Monday August 1, 2017, is written to show that indeed a lunar industrial facility is possible, we do have the technology, and no it will not be too expensive. Furthermore, it enables something that though it would seem to be science fiction, isn’t, which is a shipyard in lunar orbit for the construction of humanities first truly interplanetary space vehicles, as well as providing the materials for very large Earth orbiting space platforms for science and commerce.

Why do we need interplanetary vehicles? We have over 9.1 billion reasons, for that is the number of humans who will be on the Earth in 2050, only 33 years from now. The greatest fear is that with only a single planet’s resources, we cannot provide for this number in any reasonable manner. This underpins most of the rhetoric today regarding resource conservation and how to confront other global problems. This is a self defeating philosophy. Rather than rationing poverty, it should be our common goal to help create a world where all of our fellow planetary citizens can live in a society that continues to progress, materially as well as morally. Our science knows beyond any shadow of a doubt now that resources many orders of magnitude greater than what are available from the Earth, exist in the solar system around us.

Read more

Jan 17, 2019

Ford Is Planning an All-Electric F-150 Pickup Truck

Posted by in categories: sustainability, transportation

Will truck drivers keep ICE-ing innocent electric car owners in the future?

Read more

Jan 16, 2019

SLS Liquid Hydrogen Tank Test Article Loaded into Test Stand

Posted by in category: transportation

The structural test article for the liquid hydrogen tank, a component of the #NASASLS core stage, has been loaded into its new home, a test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The 149-foot piece of test hardware will go through rigorous testing simulating the stresses of liftoff and flight. MORE.


The largest piece of structural test hardware for America’s new deep space rocket, the Space Launch System, was loaded into Test Stand 4693 at NASA’s Marshall Space Flight Center in Huntsville, Alabama Jan. 14, 2019. The liquid hydrogen tank is part of the rocket’s core stage that is more than 200 feet tall with a diameter of 27.6 feet, and stores cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. The liquid hydrogen tank test article is structurally identical to the flight version of the tank that will comprise two-thirds of the core stage and hold 537,000 gallons of supercooled liquid hydrogen at minus 423 degrees Fahrenheit. Dozens of hydraulic cylinders in the 215-foot-tall test stand will push and pull the tank, subjecting it to the same stresses and loads it will endure during liftoff and flight.

Image Credit: NASA/Tyler Martin

Continue reading “SLS Liquid Hydrogen Tank Test Article Loaded into Test Stand” »