Toggle light / dark theme

British startup Faradair Aerospace has unveiled plans to build and sell an 18-seat bioelectric hybrid airplane for use as both a passenger and cargo air transport. The company is calling its plane the Bio Electric Hybrid Aircraft (BEHA). The current model is the M1H, and the plans include a triple box wing configuration to give it exceptional lift.

The M1H will have an for use during takeoff and landing, providing a much quieter experience than jets with a traditional engine. Engineers at Faradair claim the plane will produce just 60 dba when taking off, compared to the average of 140 dba for conventional jet aircraft. It will also have a 1,600hp turboprop engine in the rear of the plane for use during flight and for recharging the batteries that power the plane when landing and taking off.

Representatives for Faradiar also claim the plane will be able to land and take off from shorter runways than conventional jet aircraft, needing just 300 meters of space—this feat will be possible due to the “vectored thrust” provided by the two contra-rotating propfans, its triple box wing design and a light body made of carbon composites. Once in the air, the plane will be capable of flying at speeds of 230 mph.

Read more

35,000 feet is standard cruising altitude for a commercial jet airplane, but at those lofty heights the air temperature plummets below −51 degrees Celsius and ice can easily form on wings. To prevent ice formation and subsequent drag on the aircraft, current systems utilize the heat generated by burning fuel. But these high-temperature, fuel-dependent systems cannot be used on the proposed all-electric, temperature-sensitive materials of next-generation aircraft.

Read more

The wings of aircraft today are complex systems with lots of moving flaps and components controlled by hydraulics or cables depending on the application. Researchers from NASA and MIT have shown off a new wing design that is flexible and able to change shape to control the flight. The team says that the new design could significantly boost aircraft production, flight, and improve maintenance efficiency.

Read more

Aiming a laser beam at an aircraft isn’t a harmless prank: The sudden flash of bright light can incapacitate the pilot, risking the lives of passengers and crew. But because attacks can happen with different colored lasers, such as red, green or even blue, scientists have had a difficult time developing a single method to impede all wavelengths of laser light. Today, researchers report liquid crystals that could someday be incorporated into aircraft windshields to block any color of bright, focused light.

Read more

The city of the future is a symbol of progress. The sci-fi vision of the future city with sleek skyscrapers and flying cars, however, has given way to a more plausible, human, practical, and green vision of tomorrow’s smart city. Whilst smart city visions differ, at their heart is the notion that in the coming decades, the planet’s most heavily concentrated populations will occupy city environments where a digital blanket of sensors, devices and cloud connected data is being weaved together to build and enhance the city living experience for all. In this context, smart architecture must encompass all the key elements of what enable city ecosystems to function effectively. This encompasses everything from the design of infrastructure, workspaces, leisure, retail, and domestic homes to traffic control, environmental protection, and the management of energy, sanitation, healthcare, security, and a building’s eco-footprint.

The

Livingston is sitting comfortably in his office in Portland, Oregon, when he appears on the screens inside the car and announces he’ll be our teleoperator this afternoon. A moment later, the MKZ pulls into traffic, responding not to the man in the driver’s seat, but to Livingston, who’s sitting in front of a bank of screens displaying feeds from the four cameras on the car’s roof, working the kind of steering wheel and pedals serious players use for games like Forza Motorsport. Livingston is a software engineer for Designated Driver, a new company that’s getting into teleoperations, the official name for remotely controlling self- driving vehicles.


Designated Driver is just the latest competitor to enter the market for the teleoperation tech that will make robo-cars work.

Read more