Toggle light / dark theme

While the ID Buzz, aka the electric Microbus, isn’t quite production-ready, it may not be the only iconic vehicle Volkswagen’s rebooting into an EV. 2019 saw the release of the final Volkswagen Beetle. Despite its styling and long history, consumer interest lagged, and VW discontinued it. But now, there’s rumors of a new Volkswagen Beetle—an electric one.

RELATED: Why Is This 1964 Volkswagen Selling For $290,000?

This news comes courtesy of the electric Volkswagen forum VW ID Talk, Autoblog reports. Forum users discovered several VW trademark applications submitted to the EU Intellectual Property Office.

(MENAFN — The Conversation) A large crack, stretching several kilometres, made a sudden appearance recently in south-western Kenya. The tear, which continues to grow, caused part of the Nairobi-Narok highway to collapse. Initially, the appearance of the crack was linked to tectonic activity along the East African Rift. But although geologists now think that this feature is most likely an erosional gully, questions remain as to why it has formed in the location that it did and whether its appearance is at all connected to the ongoing East African Rift. For example, the crack could be the result of the erosion of soft soils infilling an old rift-related fault.

The Earth is an ever-changing planet, even though in some respects change might be almost unnoticeable to us. Plate tectonics is a good example of this. But every now and again something dramatic happens and leads to renewed questions about the African continent splitting in two.

The Earth’s lithosphere (formed by the crust and the upper part of the mantle) is broken up into a number of tectonic plates. These plates are not static, but move relative to each other at varying speeds, ‘gliding’ over a viscous asthenosphere. Exactly what mechanism or mechanisms are behind their movement is still debated, but are likely to include convection currents within the asthenosphere and the forces generated at the boundaries between plates.

They suggest next steps in search for large-scale energy storage solution.

Lithium-ion batteries are recognized for their high energy density in everything from mobile phones to laptop computers and electric vehicles, but as the need for grid-scale energy storage and other applications becomes more pressing, researchers have sought less expensive and more readily available alternatives to lithium.

Batteries using more abundant multivalent metals could revolutionize energy storage. Researchers review the current state of multivalent metal-ion battery research and provide a roadmap for future work in Nature Energy, reporting that the top candidates – using magnesium, calcium, zinc and aluminum – all have great promise, but also steep challenges to meet practical demands.

How do you beat Tesla, Google, Uber and the entire multi-trillion dollar automotive industry with massive brands like Toyota, General Motors, and Volkswagen to a full self-driving car? Just maybe, by finding a way to train your AI systems that is 100,000 times cheaper.

It’s called Deep Teaching.

Perhaps not surprisingly, it works by taking human effort out of the equation.

Circa 2017


This bubbly concept car protects more than the driver; its next-generation rubber exterior can save pedestrians, too.

Traditional metal panels are replaced with soft rubber, which absorbs the impact of a collision. The car is also a shapeshifter, meaning that the rubber panels move and flex, forming a more aerodynamic shape.

Scattered across the world are a number of bewildering ‘mystery spots’ that appear to defy gravity — places where cars seem to drift uphill, and cyclists struggle to push themselves downhill.

Also known as gravity hills, these bizarre natural phenomena can be found in places like Confusion Hill in California and Magnetic Hill in Canada, and while they’ve inspired rumours of witchcraft and giant magnets buried in the countryside, the actual scientific explanation will have you questioning every slope you encounter from here on out.

There are reportedly dozens of gravity hills around the world, in the US, the UK, Australia, Brazil, and Italy, and they all have one thing in common — if you drive your car to the bottom of the hill and put it in neutral, it will proceed to roll back UP the slope.

Car buyers in Europe can now get their hands on a brand-new electric vehicle for less than the typical cost of a mobile-phone contract. Thanks to newly generous subsidies, some are even free.

Shoppers have swarmed virtual showrooms in Germany and France — the region’s two largest passenger car markets — after their national governments boosted electric-vehicle incentives to stimulate demand. Their purchase subsidies are now among the most favorable in the world.

The state support is allowing Autohaus Koenig, a dealership chain with more than 50 locations across Germany, to advertise a lease for the battery-powered Renault Zoe that is entirely covered by subsidies. In the 20 days since it put the offer online, roughly 3,000 people have inquired and about 300 have signed contracts.

Choi and other researchers have also tried to use lithium-ion battery electrodes to pull lithium directly from seawater and brines without the need for first evaporating the water. Those electrodes consist of sandwichlike layered materials designed to trap and hold lithium ions as a battery charges. In seawater, a negative electrical voltage applied to a lithium-grabbing electrode pulls lithium ions into the electrode. But it also pulls in sodium, a chemically similar element that is about 100,000 times more abundant in seawater than lithium. If the two elements push their way into the electrode at the same rate, sodium almost completely crowds out the lithium.


Lithium is prized for rechargeables because it stores more energy by weight than other battery materials. Manufacturers use more than 160,000 tons of the material every year, a number expected to grow nearly 10-fold over the next decade. But lithium supplies are limited and concentrated in a handful of countries, where the metal is either mined or extracted from briny water.

Lithium’s scarcity has raised concerns that future shortages could cause battery prices to skyrocket and stymie the growth of electric vehicles and other lithium-dependent technologies such as Tesla Powerwalls, stationary batteries often used to store rooftop solar power.

Seawater could come to the rescue. The world’s oceans contain an estimated 180 billion tons of lithium. But it’s dilute, present at roughly 0.2 parts per million. Researchers have devised numerous filters and membranes to try to selectively extract lithium from seawater. But those efforts rely on evaporating away much of the water to concentrate the lithium, which requires extensive land use and time. To date such efforts have not proved economical.

A second fan on the rear then pushes air behind the craft, driving it forward. Rudders behind this thrust fan turn the craft. It may be a hovercraft at its core, but like regular cars on the street, it has got headlights, navigation lamps, cockpit lights, as well as a flux capacitor — that’s the coloured lights around the perimeter. The hovercraft took a total of four-and-a-half years to build.

So, piloting the hovercraft feels like driving a car that’s constantly sliding around on ice. You got your foot pedal and steering wheel and it feels like you’re in a car, but you are just sliding around every way with no friction.