Toggle light / dark theme

“We put nanotubes inside of bacteria,” says Professor Ardemis Boghossian at EPFL’s School of Basic Sciences. “That doesn’t sound very exciting on the surface, but it’s actually a big deal. Researchers have been putting nanotubes in mammalian cells that use mechanisms like endocytosis, that are specific to those kinds of cells. Bacteria, on the other hand, don’t have these mechanisms and face additional challenges in getting particles through their tough exterior. Despite these barriers, we’ve managed to do it, and this has very exciting implications in terms of applications.”

Boghossian’s research focuses on interfacing artificial nanomaterials with biological constructs, including living cells. The resulting “nanobionic” technologies combine the advantages of both the living and non-living worlds. For years, her group has worked on the nanomaterial applications of single-walled carbon (SWCNTs), tubes of carbon atoms with fascinating mechanical and .

These properties make SWCNTs ideal for many novel applications in the field of nanobiotechnology. For example, SWCNTs have been placed inside to monitor their metabolisms using near-infrared imaging. The insertion of SWCNTs in mammalian cells has also led to new technologies for delivering therapeutic drugs to their intracellular targets, while in plant cells they have been used for genome editing. SWCNTs have also been implanted in living mice to demonstrate their ability to image biological tissue deep inside the body.

A review paper by scientists at Zhejiang University summarized the development of continuum robots from the aspects of design, actuation, modeling and control. The new review paper, published on Jul. 26 in the journal Cyborg and Bionic Systems, provided an overview of the classic and advanced technologies of continuum robots, along with some prospects urgently to be solved.

“Some small-scale robots with new actuation methods are being widely investigated in the field of interventional surgical treatment or endoscopy, however, the characterization of mechanical properties of them is still different problem,” explained study author Haojian Lu, a professor at the Zhejiang University.

In order to realize the miniaturization of continuum robots, many cutting-edge materials have been developed and used to realize the actuation of robots, showing unique advantages. The continuum robots embedded with micromagnet or made of ferromagnetic composite material have accurate steering ability under an external controllable magnetic field; Magnetically soft continuum robots, on the other hand, can achieve small diameters, up to the micron scale, which ensures their ability to conduct targeted therapy in bronchi or in cerebral vessels.

Bionic technology is removing physical barriers faced by disabled people while raising profound questions of what it is to be human. From DIY prosthetics realised through 3D printing technology to customised AI-driven limbs, science is at the forefront of many life-enhancing innovations.

Support the Guardian ► https://support.theguardian.com/contribute.

Today in Focus podcast ► https://www.theguardian.com/news/series/todayinfocus.

Sign up for the Guardian documentaries newsletter ► https://www.theguardian.com/info/2016/sep/02/sign-up-for-the…ies-update.

The Guardian ► https://www.theguardian.com.

The Guardian YouTube network:

Article originally published on LINKtoLEADERS under the Portuguese title “Sem saber ler nem escrever!”

In the 80s, “with no knowledge, only intuition”, I discovered the world of computing. I believed computers could do everything, as if it were an electronic God. But when I asked the TIMEX Sinclair 1000 to draw the planet Saturn — I am fascinated by this planet, maybe because it has rings —, I only glimpse a strange message on the black and white TV:

0/0

👉For business inquiries: [email protected].
✅ Instagram: https://www.instagram.com/pro_robots.

The World Robot Conference 2022 was held in Beijing. Due to the ongoing offline pandemic, only Chinese robotics companies were represented, and the rest of the world joined in the online format. But the Chinese booths were also, as always, a lot to see. We gathered for you all the most interesting things from the largest robot exhibition in one video!

0:00 Intro.
0:30 Chinese robotics market.
1:06 EX Robots.
2:38 Dancing humanoid robot.
3:37 Unitree Robotics.
4:55 Underwater bionic robot.
5:23 Bionic arm and anthropomorphic robot.
5:43 Mobile two-wheeled robot.
6:40 Industrial robots.
7:04 Reconnaissance Robot.
8:05 Logistics Solutions.
9:31 Intelligent Platform.
10:03 Robot++
10:41 Robots in Medicine.
10:58 PCR tests with robots.
11:16 Robotic surgical system.
#prorobots #robots #robot #futuretechnologies #robotics.

More interesting and useful content:
✅ Elon Musk Innovation https://www.youtube.com/playlist?list=PLcyYMmVvkTuQ-8LO6CwGWbSCpWI2jJqCQ
✅Future Technologies Reviews https://www.youtube.com/playlist?list=PLcyYMmVvkTuTgL98RdT8-z-9a2CGeoBQF
✅ Technology news.
https://www.facebook.com/PRO.Robots.Info.

#prorobots #technology #roboticsnews.

PRO Robots is not just a channel about robots and future technologies, we are interested in science, technology, new technologies and robotics in all its manifestations, science news, technology news today, science and technology news 2022, so that in the future it will be possible to expand future release topics. Today, our vlog just talks about complex things, follows the tech news, makes reviews of exhibitions, conferences and events, where the main characters are best robots in the world! Subscribe to the channel, like the video and join us!

Along the way, they discuss the early days of David’s HedWeb, the Abolitionist Project, the Three Supers of Transhumanism (Superhappiness, Superintelligence, and Superlongevity), philosophy and history of science, the nature of intelligence, field theories of consciousness, anesthesia, empathogens, anti-tolerance drugs, and much more.

Some of the key essays discussed:

Utopian Pharmacology — “Mental Health in the Third Millennium — MDMA and Beyond” — https://mdma.net/

Future Opioids: The Quest for a Drug-Free Society — https://www.opioids.com/

The Biointelligence Explosion — “How recursively self-improving organic robots will modify their own source code and bootstrap our way to full-spectrum superintelligence” — https://www.biointelligence-explosion.com/

Cyborgs transhumanist and futurists.


Museum of Science | Boston, MA
March 28th, 2018

We’ve all heard of Terminator, Blade Runner, and other science fiction about cyborgs. But how far is reality from fiction? Can scientists transform humans into machine-like creatures, stronger, smarter and, who knows, even immortal?

Join us for a unique conversation about our transhumanist future with neuroscientist Ed Boyden, leader of the Synthetic Neurobiology Group and associate professor of Biological Engineering and Brain and Cognitive Sciences at the MIT Media Lab and McGovern Institute for Brain Research; humanist Mark O’Connell, journalist and author of To Be a Machine: Adventures Among Cyborgs, Utopians, Hackers, and the Futurists Solving the Modest Problem of Death; and physicist Marcelo Gleiser, director of the Institute for Cross-Disciplinary Engagement at Dartmouth College.

This post is also available in: he עברית (Hebrew)

China has developed the world’s largest electric-powered quadruped bionic robot, which is expected to join logistics delivery and reconnaissance missions in complex environments that have proven too challenging for human soldiers, including remote border regions and highly risky combat zones, analysts said.

In December, China announced that it would work to become a leading global player in robotics by 2025 under a five-year plan.

Underwater robots are being widely used as tools in a variety of marine tasks. The RobDact is one such bionic underwater vehicle, inspired by a fish called Dactylopteridae known for its enlarged pectoral fins. A research team has combined computational fluid dynamics and a force measurement experiment to study the RobDact, creating an accurate hydrodynamic model of the RobDact that allows them to better control the vehicle.

The team published their findings in Cyborg and Bionic Systems on May 31, 2022.

Underwater robots are now used for many marine tasks, including in the fishery industry, underwater exploration, and mapping. Most of the traditional underwater robots are driven by a propeller, which is effective for cruising in at a stable speed. However, underwater robots often need to be able to move or hover at low speeds in turbulent waters, while performing a specific task. It is difficult for the propeller to move the robot in these conditions. Another factor when an is moving at low speeds in unstable flowing waters is the propeller’s “twitching” movement. This twitching generates unpredictable fluid pulses that reduce the robot’s efficiency.