Toggle light / dark theme

EVTOL battery analysis reveals unique operating demands. Researchers at the Department of Energy’s Oak Ridge National Laboratory are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically.

These aircraft, commonly called eVTOLs, range from delivery drones to urban air taxis. They are designed to rise into the air like a helicopter and fly using wing-borne lift like an airplane. Compared with helicopters, eVTOLs generally use more rotors spinning at a lower speed, making them both safer and quieter.

The airborne EV’s aren’t just flying cars, and ORNL researchers conclude that eVTOL batteries can’t just be adapted from electric car batteries. So far that has been the dominant approach to the technology, which is mostly in the modeling stage. ORNL researchers took a different tack by evaluating how lithium-ion batteries fare under extremely high power draw.

Now Flinders University researchers have discovered a light-responsive, inexpensive sulfur-derived receptive to low power, visible light lasers—which promises a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.

Details of the novel system have just been published in Angewandte Chemie International Edition, featuring a laser-etched version of the famous “Mona Lisa” painting and micro-Braille printing even smaller than a pin head.

“This could be a way to reduce the need for expensive, specialized equipment, including high-power lasers with hazardous radiation risk, while also using more sustainable materials. For instance, the key polymer is made from low-cost elemental sulfur, an industrial byproduct, and either cyclopentadiene or dicyclopentadiene,” says Matthew Flinders Professor of Chemistry Justin Chalker, from the Flinders University.

Researchers at Osaka University have discovered that considering sustainability issues through the lens of “imaginary future generations” provides valuable perspectives on technological advancements and trends in society.

The world stands on the brink of a crucial environmental threshold; the choices we make today about energy, resources, and the environment will have profound consequences for the future. Despite this, most sustainable thought tends to be limited to the viewpoint of current generations.

In a study published in Technological Forecasting and Social Change, researchers from Osaka University have revealed that adopting the perspective of “imaginary future generations” (IFGs) can yield fascinating insights into long-term social and technological trends.

Anyone who wants to produce medication, plastics or fertilizer using conventional methods needs heat for chemical reactions – but not so with photochemistry, where light provides the energy. The process to achieve the desired product also often takes fewer intermediate steps.

Researchers from the University of Basel are now going one step further and are demonstrating how the energy efficiency of photochemical reactions can be increased tenfold. More sustainable and cost-effective applications are now tantalizingly close.

Industrial chemical reactions usually occur in several stages across various interim products. Photochemistry enables shortcuts, meaning fewer intermediate steps are required. Photochemistry also allows you to work with less hazardous substances than in conventional chemistry, as light produces a reaction in substances which do not react well under heat. However, to this point there have not been many industrial applications for photochemistry, partly because supplying energy with light is often inefficient or creates unwanted by-products.

A recent study reveals how hydrogen gas, often touted as the energy source of tomorrow, provided energy in the past, at the origin of life 4 billion years ago. Hydrogen gas is clean fuel. It burns with oxygen in the air to provide energy with no CO2.

Hydrogen is a key to sustainable energy for the future. Though humans are just now coming to realize the benefits of hydrogen gas (H2 in chemical shorthand), microbes have known that H2 is a good fuel for as long as there has been life on Earth. Hydrogen is ancient energy.

The very first cells on Earth lived from H2 produced in hydrothermal vents, using the reaction of H2 with CO2 to make the molecules of life. Microbes that thrive from the reaction of H2 and CO2 can live in total darkness, inhabiting spooky, primordial habitats like deep-sea hydrothermal vents or hot rock formations deep within the Earth’s crust, environments where many scientists think that life itself arose.

Two of my passions are electric bicycle projects and DIY solar powered projects. In fact I’ve written the book on both topics. So to see these two fields combined in one quirky-yet-awesome product totally made my week. I just hope you’re as excited as I am to dive into this strange electric bike/car contraption that boasts a heap of features from seating for two to a giant solar panel array offering nearly unlimited range!

It’s just one of many strange, awesome and fun-looking electric vehicles I’ve discovered while window shopping on the world’s most eclectic digital thrift store: Alibaba. And now it has the honor of officially becoming this week’s Awesomely Weird Alibaba Electric Vehicle of the Week!

We’ve seen solar powered electric bicycles before, but they’re usually designed with some serious pedaling requirements. The low power of even large-sized panels means that riders generally still have to provide some significant leg assist.

“Declining winter snow cover is one of the most obvious and pronounced impacts of climate change in the Alps. Its effects on the functioning and biodiversity of alpine ecosystems are a major concern for people living in Alpine regions and beyond,” said Dr. Michael Bahn.


How can the impacts of climate change alter biodiversity in vast mountain ranges throughout the world? This is what a recent study published in Global Change Biology hopes to address as a team of international researchers investigated how decreased levels of vegetation and snow cover in the Alps due to climate change are having adverse effects on the region’s biodiversity. This study holds the potential to help scientists, legislators, and the public better understand the short-and long-term impacts of climate change on regions across the globe.

For the study, the researchers examined variances in soil grassland microbial nitrogen cycling within the Alps during the spring and autumn due to their warming temperatures that are exceedingly more than twice the global average. In the end, the researchers discovered that nitrogen uptake by plant organics were reduced in the spring and autumn by 70 percent and 82 percent, soil microbial biomass was reduced by 19 percent and 38 percent, and the number of harmful bacteria that could have adverse effects on nitrogen production increased 253 percent and 136 percent, respectively. Collectively, the researchers determined that climate change is having an adverse effect on nitrogen cycling within the Alps’ grasslands.

“Findings from the study are not just relevant for cities in Singapore where it is hot all year round, but for other urban areas around the world too,” said Dr. Wan Man Pun.


How can paint be used to combat climate change? This is what a recent study published in Sustainable Cities and Society hopes to address as a team of researchers from Singapore investigated real-world applications regarding how cool paint coatings that reflect the Sun’s heat could be attributed to enabling people to feel up to 34.7 degrees Fahrenheit (1.5 degrees Celsius) cooler compared to traditional city pavement. This study holds the potential to produce more comfortable city environments, especially with summer heats becoming warmer every year.

For the study, the researchers covered roads, walls, and roofs of an industrialized area of western Singapore consisting of almost 130,000 square feet (12,000 square meters) containing several multi-storied buildings. Over a 24-hour period, the researchers discovered that afternoon temperatures within the coated environment were up to 35.6 degrees Fahrenheit (2 degrees Celsius) cooler compared to non-coated surroundings. Additionally, the team used the Universal Thermal Climate Index to measure temperature comfort levels for locals walking through the area, discovering these individuals experienced up to 34.7 degrees Fahrenheit (1.5 degrees Celsius) cooler because of the cool paint coatings.