Toggle light / dark theme

How 3D Printing Is Powering a Cleaner Environment in the Future

3D printing is revolutionizing microbial electrochemical systems (MES) by enabling precise reactor design, custom electrode fabrication, and enhanced bioprinting applications. These innovations optimize pollutant degradation and energy production, with significant implications for sustainability and environmental management.

Microbial electrochemical systems (MES) are emerging as a promising technology for addressing environmental challenges by leveraging microorganisms to transfer electrons. These systems can simultaneously degrade pollutants and generate electricity, making them valuable for sustainable wastewater treatment and energy production.

However, conventional methods for constructing MES components often lack design flexibility, limiting performance optimization. To overcome these limitations and enhance MES efficiency, innovative fabrication techniques are needed—ones that allow precise control over reactor structures and functions.

Here’s how to book a driverless Uber ride in Austin

AUSTIN (KXAN) — Beep beep — Uber rideshare users can now book a driverless ride around Austin, as the ridehailing company officially launches its partnership with Waymo.

Waymo and Uber announced in September the planned collaboration between the two companies, with rollouts poised in both Austin and Atlanta in 2025. Beginning Tuesday, Uber users can match with one of Waymo’s Jaguar I-PACE vehicles while booking an UberX, Uber Green, Uber Comfort or Uber Comfort Electric vehicle.

“Starting today, Austin riders can be matched with a Waymo autonomous vehicle on the Uber app, making their next trip even more special,” Uber CEO Dara Khosrowshahi said in the announcement. “With Waymo’s technology and Uber’s proven platform, we’re excited to introduce our customers to a future of transportation that is increasingly electric and autonomous.”

New Methane Flare Tech: Efficiency Plus Combustion Stability

“A good ratio of oxygen to methane is key to combustion,” said Justin Long.


Can methane flare burners be advanced to produce less methane? This is what a recent study published in Industrial & Engineering Chemistry Research hopes to address as a team of researchers from the University of Michigan (U-M) and the Southwest Research Institute (SwRI) developed a methane flare burner with increased combustion stability and efficiency compared to traditional methane flare burners. This study has the potential to develop more environmentally friendly burners to combat human-caused climate change, specifically since methane is a far larger contributor to climate change than carbon dioxide.

For the study, the researchers used a combination of machine learning and novel manufacturing methods to test several designs of a methane flare burner that incorporates crosswinds to simulate real-world environments. The burner design includes splitting the methane flow in three directions while enabling oxygen flow from crosswinds to mix with the methane, enabling a much cleaner combustion. In the end, the researchers found that their design achieves 98 percent combustion efficiency, meaning it produces 98 percent less methane than traditional burners.

“A good ratio of oxygen to methane is key to combustion,” said Justin Long, who is a Senior Research Engineer at SwRI. “The surrounding air needs to be captured and incorporated to mix with the methane, but too much can dilute it. U-M researchers conducted a lot of computational fluid dynamics work to find a design with an optimal air-methane balance, even when subjected to high-crosswind conditions.”

Predicting the Future: When Will the Next Ice Age Begin?

“The pattern we found is so reproducible that we were able to make an accurate prediction of when each interglacial period of the past million years or so would occur and how long each would last,” said Dr. Stephen Barker.


Earth has experienced several climate cycles throughout its long history, including several ice ages that caused the planet to freeze over. The last ice age occurred approximately 11,700 years ago, but when could the next one occur? This is what a recent study published in Science hopes to address as an international team of researchers investigated specific characteristics that could help predict Earth’s next ice age. This study has the potential to help researchers, climate scientists, and the public better understand Earth’s climate history and how climate change could alter this history.

For the study, the researchers analyzed Earth’s climate history over the last one million years and compared this data to changes in Earth’s axial tilt, the axial tilt’s wobble (also called precession), and changes in Earth’s orbit around the Sun. The goal of the study was to connect these planetary parameters to past ice ages, also called glacial periods, while also attempting to predict future ice ages without human-caused climate change.

In the end, the researchers not only discovered when every ice age occurred over the past 900,000 years, but they predict the Earth will have approximately 10,000 years until the next ice age, noting we are currently in an interglacial period known as the Holocene.

Japan reveals the world’s first solar super-panel: More power than 20 nuclear reactors

Renewable energy in Japan will receive a seismic shift via perovskite solar cells, the latest development that would change the way solar energy is viewed. Lightweight, flexible, and adaptable, these solar cells will provide a more viable means to producing energy within a city, responding to shortages of land and sustainable issues. Let’s see how Japan is benefiting from the PSC technology to bring about a green future.

Japan is currently utilizing its competitive advantages to lead the rest of the world into the new renewable energy age. Under its revised energy plan, the Ministry of Industry now prioritizes PSCs on Section 0 of its plan wherein Japan aims to develop PSC sections generating 20 gigawatts of electricity equivalent to 20 nuclear reactors by fiscal 2040.

The strategy was designed to be closely aligned with the country’s commitment to net-zero emissions by 2050. At the center of this strategy is Japan’s position as the second-largest iodine producer in the world, a necessary ingredient in the manufacturing of perovskite solar cells.

Retrieval of Total Suspended Matter Concentration Based on the Iterative Analysis of Multiple Equations: A Case Study of a Lake Taihu Image from the First Sustainable Development Goals Science Satellite’s Multispectral Imager for Inshore

Inland waters consist of multiple concentrations of constituents, and solving the interference problem of chlorophyll-a and colored dissolved organic matter (CDOM) can help to accurately invert total suspended matter concentration (Ctsm). In this study, according to the characteristics of the Multispectral Imager for Inshore (MII) equipped with the first Sustainable Development Goals Science Satellite (SDGSAT-1), an iterative inversion model was established based on the iterative analysis of multiple linear regression to estimate Ctsm. The Hydrolight radiative transfer model was used to simulate the radiative transfer process of Lake Taihu, and it analyzed the effect of three component concentrations on remote sensing reflectance.

WalkerS1-UBTECH

This is automating labor in an entirely new way.

Chinese robotics company UBTech has received over 500 orders for its new industrial humanoid robot, the Walker S1.

The Walker S1, officially launched this week, is already operating in factories, including those of BYD, the world’s largest electric vehicle manufacturer. This robot works alongside unmanned logistic vehicles and smart manufacturing systems, making it one of the first in the world to automate large-scale operations to this extent.

China’s manufacturing sector has faced a growing labor shortage, with a projected gap of 30 million workers by 2025. UBTech aims to reduce human labor in automated factories from 30% to 10% by using robots like the Walker S1, focusing human efforts on high-level tasks such as tool management and collaboration. “The idea is to replace around 20% of the workload with humanoid robots,” said UBTech’s chief brand officer Tan Min, highlighting the need for automation as vocational training programs struggle to meet the demand for skilled workers, while younger graduates increasingly avoid blue-collar jobs.

S partnerships with industry giants like BYD, FAW-Volkswagen, and Foxconn highlight the robot’s broad applications in manufacturing, logistics, and electronics. As labor shortages and safety concerns grow, UBTech’s innovative humanoid robots offer a glimpse into the future of automated factories, promising to transform not only automotive production but also other sectors through large-scale automation. ” + learn more https://www.ubtrobot.com/en/humanoid/products/WalkerS1

Image: UBTech

UBTech breakthrough sees humanoid robots work as a team in car factory

A Shenzhen-based humanoid robot maker said it has deployed “dozens of robots” in an electric vehicle (EV) factory where they work together on complicated tasks, offering a peek into the future of Made-in-China tech as artificial intelligence (AI) and robotics technologies are applied to empower manufacturing.

Hong Kong-listed UBTech Robotics said on Monday that it has completed a test to deploy dozens of its Walker S1 robots in the Zeekr EV factory in the Chinese port city of Ningbo for “multitask” and “multi site” operations.

According to photos and videos provided by UBTech, the human-shaped robots work as a team to complete tasks such as lifting heavy boxes and handling soft materials.

Finland sets a record with this energy giant capable of powering 30,000 homes and revolutionizing electricity production

In a bold move towards a sustainable future, Helsinki, Finland’s capital, has installed the world’s largest heat pump, a groundbreaking piece of technology that has the capacity to power 30,000 homes. This ambitious project is a significant step in the fight against climate change, utilizing renewable energy sources to provide a reliable and efficient heating system even in the coldest of winters. In this article, we’ll explore how this technological marvel works, its environmental impact, and the potential it has to change energy production on a global scale.

Helsinki’s heat pump represents a major breakthrough in energy technology. The system works by transferring heat from a colder environment to a warmer one, ensuring maximum energy efficiency. One of the most impressive features of this heat pump is its use of carbon dioxide as a refrigerant, which allows the pump to generate heat at temperatures of up to 90°C.

A standout innovation is the oil-free compressor, a key component that ensures the system operates efficiently while minimizing its environmental footprint. This marks the first time such a system has been implemented on this scale, reinforcing Finland’s commitment to adopting sustainable solutions for energy production. By using renewable energy sources like wind and solar power, this heat pump reduces the need for fossil fuels and helps Finland move towards a more sustainable energy future.

Microwaves Unlock a Faster, Cleaner Way to Recycle Bulletproof Kevlar

Aramid fibers like Kevlar and Twaron are incredibly strong but notoriously difficult to recycle — until now.

Researchers have pioneered a microwave-assisted chemical process that efficiently breaks down aramid polymers without the need for harsh solvents. Unlike traditional methods that are slow and require extreme conditions, this technique achieves a 96% conversion in just 15 minutes.

Revolutionizing Aramid Recycling

/* */