Toggle light / dark theme

Allows for more easily building tiny machines, biomedical sensors, optical computers, solar panels, and other devices — no complex clean room required; portable version planned.


Illustration of the bubble-pen pattern-writing process using an optically controlled microbubble on a plasmonic substrate. The small blue spheres are colloidal nanoparticles. (credit: Linhan Lin et al./Nano Letters)

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have created “bubble-pen lithography” — a device and technique to quickly, gently, and precisely use microbubbles to “write” using gold, silicon and other nanoparticles between 1 and 100 nanometers in size as “ink” on a surface.

A novel rechargeable battery developed at MIT could one day play a critical role in the massive expansion of solar generation needed to mitigate climate change by midcentury. Designed to store energy on the electric grid, the high-capacity battery consists of molten metals that naturally separate to form two electrodes in layers on either side of the molten salt electrolyte between them. Tests with cells made of low-cost, Earth-abundant materials confirm that the liquid battery operates efficiently without losing significant capacity or mechanically degrading—common problems in today’s batteries with solid electrodes. The MIT researchers have already demonstrated a simple, low-cost process for manufacturing prototypes of their battery, and future plans call for field tests on small-scale power grids that include intermittent generating sources such as solar and wind.

Read more

“It’s probably better than a person right now (at driving),” Musk said on the call.

Musk added that in the next two years or so, Tesla cars “will be able to drive virtually all roads at a safety level significantly better than humans.”

“I think within two years you’ll be able to summon your car from across the country,” Musk said.

Read more

Yesterday, Tesla Motors released software update 7.1 for the Model S and Model X, an update that allows the electric cars to park themselves while you stand by and watch in awe. Today, CEO Elon Musk made a bold prediction: In 2018, this feature will work anywhere that cars can drive.

Called Summon, the functionality is part of Tesla’s Autopilot self-driving technology. Autopilot was introduced with version 7.0 of Tesla’s software in October 2015, and lets drivers take their hands off the wheel in certain conditions.

Summon, which is currently in beta (it’s not enabled by default, so you have to turn it on at Controls = Settings = Driver Asssistance = Autopilot), takes that functionality a step further, once you arrive home and exit your Model S or Model X.

Read more

Imagine if your clothing could, on demand, release just enough heat to keep you warm and cozy, allowing you to dial back on your thermostat settings and stay comfortable in a cooler room. Or, picture a car windshield that stores the sun’s energy and then releases it as a burst of heat to melt away a layer of ice.

According to a team of researchers at MIT, both scenarios may be possible before long, thanks to a new material that can store solar during the day and release it later as , whenever it’s needed. This transparent polymer film could be applied to many different surfaces, such as window glass or clothing.

Although the sun is a virtually inexhaustible source of energy, it’s only available about half the time we need it—during daylight. For the sun to become a major power provider for human needs, there has to be an efficient way to save it up for use during nighttime and stormy days. Most such efforts have focused on storing and recovering in the form of electricity, but the new finding could provide a highly efficient method for storing the sun’s energy through a chemical reaction and releasing it later as heat.

Read more

The combination of human and computer intelligence might be just what we need to solve the “wicked” problems of the world, such as climate change and geopolitical conflict, say researchers from the Human Computation Institute (HCI) and Cornell University.

In an article published in the journal Science, the authors present a new vision of human computation (the science of crowd-powered systems), which pushes beyond traditional limits, and takes on hard problems that until recently have remained out of reach.

Humans surpass machines at many things, ranging from simple pattern recognition to creative abstraction. With the help of computers, these cognitive abilities can be effectively combined into multidimensional collaborative networks that achieve what traditional problem-solving cannot.

Read more