Toggle light / dark theme

Nice.


NILES, Ill., May 18, 2016 /PRNewswire/ — MicroLink Devices is proud to announce that Airbus Defence and Space has issued a production contract for MicroLink’s epitaxial liftoff (ELO)-based multijunction solar sheets for use on the new Zephyr S platform.

Photo — http://photos.prnewswire.com/prnh/20160517/368562

Read more

Friends have been asking me to write something on space exploration and my campaign policy on it, so here it is just out on TechCrunch:


When people think about rocket ships and space exploration, they often imagine traveling across the Milky Way, landing on mysterious planets and even meeting alien life forms.

In reality, humans’ drive to get off Planet Earth has led to tremendous technological advances in our mundane daily lives — ones we use right here at home on terra firma.

I recently walked through Boston’s Logan International Airport; a NASA display reminded me that GPS navigation, anti-icing systems, memory foam and LED lights were all originally created for space travel. Other inventions NASA science has created include the pacemaker, scratch-resistant lenses and the solar panel.

These types of advancements are one of the most important reasons I am hoping our next U.S. president will try to jump-start the American space program — both privately and publicly. Unfortunately, it doesn’t appear any of them are talking about the issue. But they should be. As we enter the transhumanist age — the era of bionic limbs, brain implants and artificial intelligence — space exploration might once again dramatically lead us forward in discovering the most our species can become.

Read more

The future of movies and manufacturing may be in 3D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.

One of the latest advancements in these fields centers on (MoS2), a two-dimensional semiconductor that, while commonly used in lubricants and steel alloys, is still being explored in optoelectronics.

Recently, engineers placed a single layer of MoS2 molecules on top of a photonic structure called an optical nanocavity made of aluminum oxide and aluminum. (A nanocavity is an arrangement of mirrors that allows beams of light to circulate in closed paths. These cavities help us build things like lasers and optical fibers used for communications.)

Read more

China’s state-owned Shenhua Group Corp. has just signed a memorandum of understanding with Santa Monica based SolarReserve, partnering to bring 1,000 MW of clean energy into China.

Green is going global. More and more countries are getting in on the green energy bandwagon, shifting their energy dependencies from fossil fuel burning to renewable energy. And the biggest recipient of this? Solar.

Countries are increasingly depending on the Sun to provide for their energy needs. And this means the building of bigger and better solar farms.

Read more

These automaker knuckleheads were planning to try and hide self driving cars into the 2030’s:

Head of GM’s foresight and trends unit says timetable for autonomous vehicles likely moved from 2035 to 2020, if not sooner.


A General Motors Co. executive credited Silicon Valley companies, including Alphabet Inc.’s Google car division and Tesla Motors Inc., for accelerating the development of autonomous vehicle technology and shortening the timetable for when safer self-driving cars hit the road.

Richard Holman, a 30-year automotive veteran running GM’s foresight and trends unit, said Tuesday that three years ago most industry participants would have estimated 2035 as a reasonable timetable for self-driving cars. Speaking to a conference in suburban Detroit, Mr. Holman said now most people see that technology being deployed by 2020, if not sooner.

Mr. Holman noted companies like GM and its rivals have been working on autonomous vehicles for several years, and said tech giant Google and electric-car maker Tesla deserve get credited for moving the industry along.

Read more

Recognizing the importance of biofuels to energy and climate security, the U.S. Department of Energy has announced up to $90 million in project funding focused on designing, constructing and operating integrated biorefinery facilities. The production of biofuels from sustainable, non-food, domestic biomass resources is an important strategy to meet the Administration’s goals to reduce carbon emissions and our dependence on imported oil.

Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower is a funding opportunity meant to assist in the construction of bioenergy infrastructure to integrate cutting-edge pretreatment, process, and convergence technologies. Biorefineries are modeled after petroleum refineries, but use domestic biomass sources instead of crude oil, or other fossil fuels to produce biofuels, bioproducts, and biopower. They convert biomass feedstocks—the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel and other hydrocarbon fuels—to another form of fuel or energy product. This funding will support efforts to improve and demonstrate processes that break down complex biomass feedstocks and convert them to gasoline, diesel and jet fuel, as well as plastics and chemicals.

“The domestic bio-industry could play an important part in the growing clean energy economy and in reducing American dependence on imported oil,” said Lynn Orr, DOE’s under secretary for science and energy. “This funding opportunity will support companies that are working to advance current technologies and help them overcome existing challenges in bioenergy so the industry can meet its full potential.”

Read more

Creating Q-Dots/ QDs (Acronym seems to depend on which reference book, article that you read) more cheaply and efficiently too.


Quantum dots (QDs) are semiconducting nanocrystals prized for their optical and electronic properties. The brilliant, pure colors produced by QDs when stimulated with ultraviolet light are ideal for use in flat screen displays, medical imaging devices, solar panels and LEDs. One obstacle to mass production and widespread use of these wonder particles is the difficulty and expense associated with current chemical manufacturing methods that often requiring heat, high pressure and toxic solvents.

But now three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method. Their work was recently featured in an article in The New York Times called “A curious tale of quantum dots.”

The Lehigh team— Bryan Berger, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering; Chris Kiely, Harold B. Chambers Senior Professor, Materials Science and Engineering and Steven McIntosh, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering, along with Ph.D. candidate Li Lu and undergraduate Robert Dunleavy—have detailed their findings in an article called “Single Enzyme Biomineralization of Cadmium Sulfide Nanocrystals with Controlled Optical Properties” published in the Proceedings of the National Academy of Sciences (PNAS).

Read more