Toggle light / dark theme

Closing in on molecular manufacturing…


http://xt-pl.com received an honorable mention from I-Zone judges for its innovative product that prints extremely fine film structures using nanomaterials. XTPL’s interdisciplinary team is developing and commercializing an innovative technology that enables ultra-precise printing of electrodes up to several hundred times thinner than a human hair – conducive lines as thin as 100 nm. XTPL is facilitating the production of a new generation of transparent conductive films (TCFs) that are widely used in manufacturing. XTPL’s solution has a potentially disruptive technology in the production of displays, monitors, touchscreens, printed electronics, wearable electronics, smart packaging, automotive, medical devices, photovoltaic cells, biosensors, and anti-counterfeiting. The technology is also applicable to the open-defect repair industry (the repair of broken metallic connections in thin film electronic circuits) and offers cost-effective, non-toxic, flexible industry-adapted solutions.

XTPL’s technology might be the only one in the world offering cost-effective, non-toxic, flexible, industry adapted solution for the market of displays TFT/LCD/OLED, integrated circuits (IC), printed circuit boards (PCB), multichip modules (MCM); photolithographic masks & solar cells market.

XTPL delivers also solutions for research & prototyping including printing head, electronics, software algorithms which are the core of the system driving the electric field and the assembly process of nanoparticles implemented in XTPL’s Nanometric Lab Printer. It is a device that offers necessary functionalities to test, evaluate and use XTPL line-forming technology with nanometric precision and enables positioning of the printing head with micrometric resolution precisely.

Official video explaining XTPL’s technology: https://youtu.be/WMerzxzCXuw

Filmed at the I-Zone demo and prototype area at SID Display Week, the world’s largest and best exhibition for electronic information display technology.

Read more

Current solar cells are able to convert into electricity around 20% of the energy received from the Sun, but a new technique has the potential to convert around 60% of it by funneling the energy more efficiently.

UK researchers can now ‘funnel’ electrical charge onto a chip. Using the atomically thin semiconductor hafnium disulphide (HfS2), which is oxidized with a high-intensity UV laser, the team were able to engineer an electric field that funnels electrical charges to a specific area of the chip, where they can be more easily extracted.

This method has the potential to harvest three times the energy compared with traditional systems. The researchers believe their breakthrough could result in solar panels, no bigger than a book, producing enough energy to power a family-sized house.

Read more

The financial costs of flooding in Canada’s maritime region could spike by 300 per cent by the end of the century if steps are not taken to address the impacts of climate change.

A study done by researchers at the University of Waterloo looked at the Halifax, Nova Scotia area, a region hard hit by recent riverine flooding. The team, made up economists, geographers and political scientists, merged data on flood probability, and financial payout information from the insurance/re-insurance market and used the information to develop a forecast.

“Until recently there hasn’t been a lot of work exploring what increased flooding will cost, and who will get stuck with the bill,” says Andrea Minano, coordinator of the Canadian Coastal Resilience Forum (CCRF) and a researcher at Waterloo’s Faculty of Environment. “The increases in flood losses put into question the long term insurability in the Halifax area, and highlight a broader problem facing many other areas in Canada if no actions are taken to mitigate and adapt to change.”

Read more

A new study carried out by an international team of researchers, using the chemistry of ocean sediments has highlighted a widespread picture of Atlantic circulation changes associated with rapid climate change in the past.

The new integrated dataset, published today in the journal Nature Communications, provides new insights into the interactions of melting ice, and climate change, with potential implications for future long-term changes in the Earth systems with .

Dr. Hong Chin Ng from the University of Bristol’s School of Earth Sciences, is the study’s lead author.

Read more

Researchers have identified a group of materials that could be used to make even higher power batteries. The researchers, from the University of Cambridge, used materials with a complex crystalline structure and found that lithium ions move through them at rates that far exceed those of typical electrode materials, which equates to a much faster-charging battery.

Although these materials, known as niobium tungsten oxides, do not result in higher energy densities when used under typical cycling rates, they come into their own for fast charging applications. Additionally, their physical structure and chemical behaviour give researchers a valuable insight into how a safe, super-fast charging battery could be constructed, and suggest that the solution to next-generation batteries may come from unconventional materials. The results are reported in the journal Nature.

Many of the technologies we use every day have been getting smaller, faster and cheaper each year—with the notable exception of batteries. Apart from the possibility of a smartphone which could be fully charged in minutes, the challenges associated with making a better battery are holding back the widespread adoption of two major clean technologies: electric cars and grid-scale storage for solar power.

Read more

In the end, however, if the critics quoted in the Science article don’t care about global warming, fine – many people don’t. If they think renewables alone can do it, fine – some people do. I’m sure they’re well-intentioned. However, every leading climate scientist from Jim Hansen on down knows that we will not achieve any of our climate goals without a dramatic increase in both nuclear and renewables.

Since fast-reactors, like those that will be tested in the VITR, can get ten times the power out of the same fuel, can burn spent fuel and even depleted uranium like our old Iraqi tank armor, when we get to fast reactors as a significant portion of our energy we will have several thousand years of low-carbon power on hand.

That’s more energy than exists in all the coal, oil and natural gas in the ground right now.

Read more

Ten months after Hurricane Maria, Adjuntas still loses power any time a heavy rain or wind pounds the rickety power lines feeding this town high in the central mountains of Puerto Rico.

That leaves its 20,000 people once again in the dark, without light, fresh water or air conditioning—except for a handful of homes and businesses glowing in the night thanks to .

The people of Adjuntas call those places “cucubanos,” an indigenous Puerto Rican firefly. They’re part of a small but growing movement to provide the U.S. territory with sustainable, renewable energy independent of the decrepit grid.

Read more

You might never have heard of expanded polystyrene, but you’ve definitely used it. It’s the lightweight white foam used for everything from packing peanuts to holding boxes of veggies at the supermarket.

Expanded polystyrene (EPS) is versatile, waterproof, and surprisingly strong. Unfortunately, it’s also a nightmare to dispose of. It fragments easily into many small, light pieces which can be easily carried away by the wind, and is difficult to process.

Australia exports some EPS to be recycled overseas, but we have less than one collection point per state. All of this means that The NSW Evironmental Protection Agency estimates that some 12,000 tonnes of EPS is sent to landfill every year. According to the Australian Plastics Recycling survey, about 14% of EPS is recovered for recycling. Most of that is exported – only around 1.6% of all the EPS used in Australia is recycled here.

Read more

A fashion collection made from the remains of grapes from the wine industry and plastic made from chicken feathers are two new twists on the practice of making new products from waste, and a growing demand for sustainability from consumers mean there could be a ready market for this type of innovation.

Food waste isn’t just the result of groceries that have gone off or uneaten meals. As food is processed for consumption, huge amounts of waste are generated. The European poultry industry, for example, generated about 3.1 million tons of discarded feathers in 2014. And during , around 25% of the weight of grapes, such as the skins and seeds, are wasted.

These byproducts could soon be given a second life, as scientists work out how to transform them into new .

Read more

Oak Ridge National Laboratory scientists have developed a crucial component for a new kind of low-cost stationary battery system utilizing common materials and designed for grid-scale electricity storage.

Large, economical electricity storage systems can benefit the nation’s grid in numerous ways: balancing loads between peak and off-peak demand times; supplying energy during outages; storing electricity from fluctuating sources like wind and solar power; and accommodating extreme fast charging of electric vehicles.

The grid chiefly relies on hydropower facilities for , although stationary systems using lithium-ion batteries are increasing. However, lithium is expensive and mostly sourced from countries outside the United States.

Read more