Toggle light / dark theme

In Elon we trust the planet earth!


Tesla studies the possibility of becoming an energy supplier in Europe, offering photovoltaic, storage and electric car charging in one package.

Tesla doesn’t just sell cars. Among the various sectors in which it operates, domestic energy is perhaps the one with the widest growth margins. After launching its photovoltaic products, both solar panels, and tiles, and after the famous PowerWall accumulation, Musk’s company is studying the possibility of offering all its assets in a single offer, even becoming an electricity provider in the world.

It would be a very important step, which would allow Tesla to manage all the variables in an integrated way, including the charging of electric cars. The novelty was discovered through a survey that the same company distributed to customers in Germany, with questions that left room for few doubts:

Tesla is going to work with spaceships too. Enhanced partnership with SpaceX.


This is revealed by a new job position, for future designers who will range from electric cars to spaceships for Mars.

A couple of days ago SpaceX tested a prototype of the future Starship, the spacecraft that will be flying to the Moon and Mars. It was a rather raw reproduction, just slightly reminiscent of the style used in the digital rendering presentation. Today we discover that, as demonstrated by a new job place, Tesla’s may be called into the final design.

Tesla, in fact, looking for new experts, specifies that the tasks for future designers who will range from electric cars to spaceships for Mars. The growing collaboration between the two Elon Musk companies is therefore evident.

BYD, one of the world’s largest electric bus manufacturer, boasted recently that its zero-emission buses already covered more than 13 million miles (21 million km) in the U.S.

The buses sold in North America are made in Lancaster, California, where local transit agency — the Antelope Valley Transit Authority (AVTA) — just crossed the 3-million-mile mark of zero-emission operations using BYD buses.

Overall, the company sold buses to more than 50 customers across the country. According to BYD, the total mileage translated into:

NASA’s Perseverance Mars rover launched from Cape Canaveral, Florida, on 30 July, carrying a host of cutting-edge technology including high-definition video equipment and the first interplanetary helicopter.

Many of the tools are designed as experimental steps toward human exploration of the red planet. Crucially, Perseverance is equipped with a device called the Mars Oxygen In-Situ Resource Utilization Experiment, or MOXIE: an attempt to produce oxygen on a planet where it makes up less than 0.2 percent of the atmosphere.

Oxygen is a cumbersome payload on space missions. It takes up a lot of room, and it’s very unlikely that astronauts could bring enough of it to Mars for humans to breathe there, let alone to fuel spaceships for the long journey home.

#SpaceWatchGL Opinion: Space Traffic Management – Impact of Large Constellations on Military Operations in Space.

🌚 #SpaceWatchGL


As part of the partnership between SpaceWatch. Global and Joint Air Power Competence Centre, we have been granted permission to publish selected articles and texts. We are pleased to present “Space Traffic Management – Impact of Large Constellations on Military Operations in Space”, originally published by the Joint Air Power Competence Centre for the Conference Read Ahead 2020.

by Mr. Marc Becker, DLR Space Administration, Bonn, Germany

These guys have a great idea…but In true Zuckerberg style how does one steal and supercharge the idea. With food having salmonella, people need to grow more food at home. What technology can be created that uses technology to help people in urban settings grow their own food. This will help many in a post covid world, and the food should be safer, and also may promote nutrition. nnAmerican farmers also are having trouble, and would see the loss in demand. Global food production needs to increase. Japan offered to boost the continent of Africa’s rice production through cooperation. The same cooperation needs to be done with American farmers to boost Africa’s food production. Technology would be used to partner American farmers with African village cooperatives. The farmers and cooperatives would work together and share profits. This way the American farmer has revenue coming from two markets and continents. The same model can also be used in Mexico to prevent immigration. This way American farmers would also have revenue coming from Central and South America, however people who normally would be farm workers would be partners, and make more than they would having to cross borders dangerously, to make less money. This model can both reduce poverty, as well and insure food security. The capital for investment would have to come from many sources. Crowdfunding is one that can be good as the money can be paid back with profit. This way a crowd fund investment would gain better returns than interest rates. The next of course would be USAID. A project can be developed, in which USAID provides American farmers with start up capital. They manage the project pay back the loans, while sharing profits. Agreements can be developed for certain periods of time, After which the American farmer turns the project over to the cooperatives…just thinking out of the box it is a bit crazy. The farmers would be like a new Peace Corps thing. #VillageEconomics nnPortfolio company #ApolloAgriculture was recently featured in a Forbes article highlighting their machine-learning and automated-operations technology that helps small-scale farmers access everything they need to maximize their profitability. #impactinvesting #agtech


Between 2011 and 2014, engineer and Stanford grad Eli Pollak worked in agricultural technology in the U.S. for a company called the Climate Corporation. The enterprise where he was one of the early employees (which in 2013 was acquired by Monsanto for over $1 billion) worked on providing customized recommendations to increase production of large scale commercial farmers. What caught Pollak’s eye during his tenure at the company, however, was that some countries were planting way more seeds, but producing dramatically less agricultural products than the U.S.

This prompted Pollak to team up with Climate Corporation colleague Earl St Sauver, and Benjamin Ngenga (who himself grew up on a farm) to start Apollo Agriculture, a Kenyan ag-tech company which uses machine learning and automated operations technology to help small-scale farmers access everything they need to maximize their profitability.

In late May, Apollo Agriculture raised $6 million in a Series A round. The round was led by Anthemis Exponential Ventures, with participation from Leaps by Bayer, Flourish Ventures (a venture of The Omidyar Group), Sage Hill Capital, To Ventures Food, Breyer Labs, and existing investors Accion Venture Lab and Newid Capital, among others.

Developed in the 1970s, rare-earth magnets are the strongest type of permanent magnets made today. The more common type are neodymium alloys made with iron and boron, while the other group is samarium-cobalt magnets. The occurrence and production of these chemical elements raise both political and environmental concerns, so to find a more sustainable solution, the UK’s Office of Low Emission Vehicles is funding a nine-partner study called OCTOPUS (Optimised Components, Test and simulatiOn, toolkits for Powertrains which integrate Ultra high-speed motor Solutions). With Bentley joining for the next three years, the program will aim for real-world applications by 2026. Coincidentally, Bentley’s first full EV is also due that year.

A machine-learning algorithm that can predict the compositions of trend-defying new materials has been developed by RIKEN chemists1. It will be useful for finding materials for applications where there is a trade-off between two or more desirable properties.

Artificial intelligence has great potential to help scientists find new materials with desirable properties. A that has been trained with the compositions and properties of known materials can predict the properties of unknown materials, saving much time in the lab.

But discovering new materials for applications can be tricky because there is often a trade-off between two or more material properties. One example is organic materials for , where it is desired to maximize both the voltage and current, notes Kei Terayama, who was at the RIKEN Center for Advanced Intelligence Project and is now at Yokohama City University. “There’s a trade-off between voltage and current: a material that exhibits a high voltage will have a low current, whereas one with a high current will have a low voltage.”

As the world’s most popular shoe, flip-flops account for a troubling percentage of plastic waste that ends up in landfills, on seashores and in our oceans. Scientists at the University of California San Diego have spent years working to resolve this problem, and now they have taken a step farther toward accomplishing this mission.

Sticking with their chemistry, the team of researchers formulated , made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. The results of their study are published in Bioresource Technology Reports and describe the team’s successful development of these sustainable, consumer-ready and .

The research was a collaboration between UC San Diego and startup company Algenesis Materials—a and technology company. The project was co-led by graduate student Natasha Gunawan from the labs of professors Michael Burkart (Division of Physical Sciences) and Stephen Mayfield (Division of Biological Sciences), and by Marissa Tessman from Algenesis. It is the latest in a series of recent research publications that collectively, according to Burkart, offer a complete solution to the plastics problem—at least for polyurethanes.

Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely replace synthetic plastics over time.

Klarenbeek and Dros cultivate algae – aquatic plants – which they then dry and process into a material that can be used to 3D print objects.

The designers believe that the algae polymer could be used to make everything from shampoo bottles to tableware or rubbish bins, eventually entirely replacing plastics made from fossil fuels like oil.