Toggle light / dark theme

The US power grid needs all of support it can get. Sad that some would stand in the way of progress.


There is no love lost between the notorious Koch brothers and the nation’s railroad industry, and the relationship is about to get a lot unlovelier. A massive new, first-of-its-kind renewable energy transmission line is taking shape in the Midwest, which will cut into the Koch family’s fossil energy business. It has a good chance of succeeding where others have stalled, because it will bury the cables under existing rights-of-way using railroad rights-of-way and avoid stirring up the kind of opposition faced by conventional above-ground lines.

The Koch brothers and their family-owned company, Koch Industries, have earned a reputation for attempting to throttle the nation’s renewable energy sector. That makes sense, considering that the diversified, multinational firm owns thousands of miles of oil, gas, and chemical pipelines criss-crossing the US (and sometimes breaking down) in addition to other major operations that depend on rail and highway infrastructure.

Koch Industries owns fleets of rail cars, but one thing it doesn’t have is its own railroad right-of-way. That’s a bit ironic, considering that railroads provided the initial kickstart for the family business back in the 1920s, but that is where trouble has been brewing today.

Now, researchers are homing in on an artificial photosynthesis device that could let us do the same trick, turning sunlight and water into clean-burning hydrogen fuel for our cars, homes, and more.

Solar cells already let us convert sunlight into electricity. Artificial photosynthesis devices, however, use sunlight to turn water or carbon dioxide into liquid fuels, such as hydrogen or ethanol.

These can be stored more easily than electricity and used in different ways, allowing them to substitute for fossil fuels like oil and gas.

Electric motors have a lot of power and it is instant on-demand.


When Tesla unveiled its new Plaid Model S earlier this month, it took the world by storm, fueling dreams of speed, racing, and fun. In the sense of a grand finale to Tesla’s event, another event was talked about in the weeks following. That event was the annual race to the summit of Pikes Peak. Also known as “The Race to the Clouds,” the entire track winds through 156 turns over 12.42 miles as it reaches the summit of Pikes Peak.

There’s no motorcycle on the planet like this one. British company White Motorcycle Concepts (WMC) has put land speed record holders on notice with a 2WD, hydraulically hub-steered electric motorcycle, designed around a giant hole. The company says the WMC250EV should be capable of more than 250 mph (402 km/h) thanks to a massive 69 percent reduction in drag.

Rob White has paid his dues in the racing world, working on numerous Formula One, Le Mans Prototype, V8 supercar and World Endurance Championship race teams over the last 25-odd years. And his approach to motorcycle design is clearly influenced by the world of high-end cars.

Going super fast ends up being much more about aerodynamics than horsepower; the air becomes a ferocious adversary as you move past two or three times highway speed. Motorcycles are aerodynamically ugly without big, streamlined fairings, chiefly because of the big, funny-shaped human on the back.

The new system streamlines the process of fermenting plant sugar to fuel by helping yeast survive industrial toxins.

More corn is grown in the United States than any other crop, but we only use a small part of the plant for food and fuel production; once people have harvested the kernels, the inedible leaves, stalks and cobs are left over. If this plant matter, called corn stover, could be efficiently fermented into ethanol the way corn kernels are, stover could be a large-scale, renewable source of fuel.

“Stover is produced in huge amounts, on the scale of petroleum,” said Whitehead Institute Member and Massachusetts Institute of Technology (MIT) biology professor Gerald Fink. “But there are enormous technical challenges to using them cheaply to create biofuels and other important chemicals.”

## GENERAL FUSION (VANCOUVER) • JUN 16, 2021.

# General Fusion to build its Fusion Demonstration Plant in the UK, at the UKAEA Culham Campus.

*Unlike conventional nuclear power, which involves fission or splitting atoms, the emerging fusion technology promises clean energy where the only emission would be helium, and importantly, no radioactive waste.*

New partnership between General Fusion and UKAEA is a landmark collaboration in the development of fusion, a technology for the world’s low-carbon future.

VANCOUVER, Canada and LONDON, United Kingdom (17th June 2021 BST): The UK Atomic Energy Authority (UKAEA) and General Fusion have announced an agreement under which General Fusion will build and operate its Fusion Demonstration Plant (FDP) at UKAEA’s Culham Campus. General Fusion will enter into a long-term lease with UKAEA following construction of a new facility at Culham to host the FDP. The FDP will demonstrate General Fusion’s proprietary Magnetized Target Fusion (MTF) technology, paving the way for the company’s subsequent commercial pilot plant. General Fusion will benefit from the cluster of fusion supply chain activities in the UK, centered on UKAEA’s globally recognized expertise and presence in the field.

Amanda Solloway, Science Minister for UK Government said: “This new plant by General Fusion is a huge boost for our plans to develop a fusion industry in the UK, and I’m thrilled that Culham will be home to such a cutting-edge and potentially transformative project. Fusion energy has great potential as a source of limitless, low-carbon energy, and today’s announcement is a clear vote of confidence in the region and the UK’s status as a global science superpower.”

The Fusion Demonstration Plant at Culham is the culmination of more than a decade of advances in General Fusion’s technology, and represents a major milestone on the company’s path to commercialization. The Fusion Demonstration Plant will verify that General Fusion’s MTF technology can create fusion conditions in a practical and cost-effective manner at power plant relevant scales, as well as refine the economics of fusion energy production, leading to the subsequent design of a commercial fusion pilot plant. Construction is anticipated to begin in 2022, with operations beginning approximately three years later.

About 2.2 billion people globally lack reliable access to clean drinking water, according to the United Nations, and the growing impacts of climate change are likely to worsen this reality.

Solar steam generation (SSG) has emerged as a promising for water harvesting, desalination, and purification that could benefit people who need it most in remote communities, disaster-relief areas, and developing nations. In Applied Physics Letters, Virginia Tech researchers developed a synthetic tree to enhance SSG.

SSG turns into heat. Water from a storage tank continuously wicks up small, floating porous columns. Once water reaches the layer of photothermal material, it evaporates, and the steam is condensed into drinking water.

During the winter months, renewable energy is in short supply throughout Europe. An international project is now considering an unconventional solution: Renewable hydrogen and carbon dioxide are pumped into the ground together, where naturally occurring microorganisms convert the two substances into methane, the main component of natural gas.

Underground Sun Conversion technology, patented by the Austrian energy company RAG Austria AG, offers a way to seasonally store renewable energy on a large scale and make it available all year round. In summer, this involves converting surplus renewable energy—, for instance—into hydrogen (H2). This is then stored together with (CO2) in natural underground storage facilities—for example, former natural gas deposits—at a depth of over 1000 meters.

This is where little helpers come into play: Microorganisms from , so-called archaea, convert hydrogen and CO2 into renewable methane (CH4) via their metabolism. Archaea are found all over the world, mainly in anaerobic, i.e. low-oxygen environments; they were responsible for converting biomass into natural gas millions of years ago. By feeding hydrogen and CO2 into suitable porous sandstone deposits, this process can be started all over again. The methane “produced” in the depth can then be withdrawn from the reservoirs during winter and used in a variety of ways as CO2-neutral natural gas.

- Progress, Potential, And Possibilities has had another busy month, with another awesome set of guests from academia, industry, and government, all focused on building a better tomorrow — Please come subscribe and enjoy all our current and future guests — Much more to come! # Health # Longevity # Biotech # SpaceExploration # ArtificialIntelligence # NeuroTechnology # RegenerativeMedicine # Sports # Environment # Sustainability # Food # NationalSecurity # Innovation # Future # Futurism # AnimalWelfare # Equity # IraPastor.