Toggle light / dark theme

ISun Wins Contract For 1,780 Solar Canopies At EV Charging Stations

iSun has won a massive solar canopy order. But who’s buying?

There are not many things I love more than a solar power canopy that charges an EV charging station. It’s all right there — transferring sunlight into electricity and then using that electricity to power a modern electric car; driving on sunshine.

So, it’s quite exciting to see that iSun (NASDAQ: ISUN) has been awarded a contract to provide 1,780 solar power canopies for EV charging stations. The problem is: we don’t have much more detail than that. We don’t know where these charging stations are and don’t know who is procuring the solar canopies.

BMW debuts its new color-changing paint technology at CES: E Ink

At the touch of a button, the car changes colors.


The surface coating of the BMW iX Flow featuring E Ink contains many millions of microcapsules, with a diameter equivalent to the thickness of a human hair. Each of these microcapsules contains negatively charged white pigments and positively charged black pigments. Depending on the chosen setting, stimulation by means of an electrical field causes either the white or the black pigments to collect at the surface of the microcapsule, giving the car body the desired shade.

Just don’t expect to see this at your local BMW dealership anytime soon: the automaker says this is just an “advanced research and design project.”

The innovative paint scheme can be triggered at the touch of a button. Right now, the colors are limited to white, black, and grey. But despite the constrained palette, BMW says it could have implications for the efficiency of its electric vehicles.

Toyota’s First Solid State Battery Will Equip A Hybrid, Not An EV

Even though solid state batteries are seen as technology that could drastically improve today’s fully-electric vehicles, it seems the first vehicles to feature one won’t actually be EVs. This is at least true in Toyota’s case since the manufacturer has now confirmed that its first solid state-equipped vehicles will be hybrids expected to debut in two or three years’ time.

The news comes from Gill Pratt, Toyota’s chief scientist and head of the Toyota Research Institute, who made the announcement during an interview for Autoline. He also mentioned that the manufacturer has made progress with its solid state project and that development is on schedule.

He did not say which hybrid Toyota will get a solid state battery, but he did go on to explain why it won’t immediately offer solid state EVs. The main reason has to do with the size of the battery pack, which for a hybrid vehicle that still has an internal combustion engine, is considerably smaller than what you see in pure EVs.

‘Ocean battery’ targets renewable energy dilemma

A wind turbine sitting idle on a calm day or spinning swiftly when power demand is already met poses a problem for renewables, and is one researchers think can be tackled under the sea.

In one vision, could use seawater to essentially store until it’s needed, helping wean humanity off fossil fuels.

“We came up with a solution that we call the battery,” Frits Bliek, CEO of Dutch startup Ocean Grazer told AFP while showing off the at the CES tech fair in Las Vegas.

Scientists reduce all-solid-state battery resistance

All-solid-state batteries are now one step closer to becoming the powerhouse of next-generation electronics, as researchers from Tokyo Tech, National Institute of Advanced Industrial Science and Technology (AIST), and Yamagata University introduce a strategy to restore their low electrical resistance. They also explore the underlying reduction mechanism, paving the way for a more fundamental understanding of the workings of all-solid-state lithium batteries.

All-solid-state lithium batteries have become the new craze in and engineering as conventional lithium-ion batteries can no longer meet the standards for advanced technologies, such as electric vehicles, which demand high energy densities, fast charging, and long cycle lives. All-solid-state batteries, which use a instead of a liquid electrolyte found in traditional batteries, not only meet these standards but are comparatively safer and more convenient as they have the possibility to charge in a short time.

However, the solid electrolyte comes with its own challenge. It turns out that the interface between the positive electrode and solid electrolyte shows a large electrical whose origin is not well understood. Furthermore, the resistance increases when the electrode surface is exposed to air, degrading the battery capacity and performance. While several attempts have been made to lower the resistance, none have managed to bring it down to 10 Ω cm2 (ohm centimeter-squared), the reported interface resistance value when not exposed to air.

First realistic portraits of squishy layer that’s key to battery performance

Lithium metal batteries could store much more charge in a given space than today’s lithium-ion batteries, and the race is on to develop them for next-gen electric vehicles, electronics and other uses.

But one of the hurdles that stand in the way is a silent battle between two of the battery’s parts. The liquid between the battery electrodes, known as the electrolyte, corrodes the surface of the lithium metal anode, coating it in a thin layer of gunk called the solid-electrolyte interphase, or SEI.

Although formation of SEI is believed to be inevitable, researchers hope to stabilize and control the growth of this layer in a way that maximizes the battery’s performance. But until now they have never had a clear picture of what the SEI looks like when it’s saturated with electrolyte, as it would be in a working battery.

Are Aluminium Air Batteries Now Practical?

Aluminium Air batteries have been a thing for a while — but now a UK inventor says he’s solved one of the biggest problems with them — the toxicity of the electrolyte they’ve traditionally used.

Does this make Aluminium Air batteries viable?

Jump on board with Ecotricity! https://ecotricity.co.nz/gettingstarted/

NZs ONLY 100% Renewable carboNZero Certified Electricity.
100% Kiwi % 50% Community Owned.

And we’re powering the Aotearoa electric vehicle future!

/* */