Toggle light / dark theme

The Lunar Lantern, an intriguing concept for establishing a human presence on the Moon, is currently being featured at the 17th International Architecture Exhibition.


In October of 2024, NASA’s Artemis Program will return astronauts to the surface of the Moon for the first time since the Apollo Era. In the years and decades that follow, multiple space agencies and commercial partners plan to build the infrastructure that will allow for a long-term human presence on the Moon. An important part of these efforts involves building habitats that can ensure the astronauts’ health, safety, and comfort in the extreme lunar environment.

This challenge has inspired architects and designers from all over the world to create innovative and novel ideas for lunar living. One of these is the Lunar Lantern, a base concept developed by ICON (an advanced construction company based in Austin, Texas) as part of a NASA-supported project to build a sustainable outpost on the Moon. This proposal is currently being showcased as part of the 17th International Architecture Exhibition at the La Biennale di Venezia museum in Venice, Italy.

The Lunar Lantern emerged from Project Olympus, a research and development program made possible thanks to a Small Business Innovation Research (SBIR) contract and funding from NASA’s Marshall Space Flight Center (MSFC). Consistent with ICON’s commitment to developing advanced construction technologies, the purpose of Olympus was to create a space-based construction system that will support NASA and other future exploration efforts on the Moon.

On Jan. 15, a hacker tried to poison a water treatment plant that served parts of the San Francisco Bay Area. It didn’t seem hard.

The hacker had the username and password for a former employee’s TeamViewer account, a popular program that lets users remotely control their computers, according to a private report compiled by the Northern California Regional Intelligence Center in February and seen by NBC News.

After logging in, the hacker, whose name and motive are unknown and who hasn’t been identified by law enforcement, deleted programs that the water plant used to treat drinking water.

Circa 2014 o,.o.


Two issues preventing the widespread uptake of electric vehicles are recharging time and lack of range. Now, scientists have shown one potential means of negating these issues. Their demonstration of electric power transfer via the car-wheel is claimed as the world’s first.

Electric vehicles can already be powered via infrastructure in the road. The South Korean city of Gumi uses a means of electromagnetic induction to power some of its buses. This newly-demonstrated method, however, uses radio frequency transmission.

The concept has been developed by Masahiro Hanazawa of Toyota Central R&D Labs and Takashi Ohira of Toyohashi University of Technology. It avoids the need for potentially dangerous contact conductivity devices by up-converting energy from power lines into radio frequency using high-speed inverters.

Humans can do lots of things that plants can’t do. We can walk around, we can talk, we can hear and see and touch. But plants have one major advantage over humans: They can make energy directly from the sun.

That process of turning sunlight directly into usable energy – called photosynthesis – may soon be a feat humans are able to mimic to harness the sun’s energy for clean, storable, efficient fuel. If so, it could open a whole new frontier of clean energy. Enough energy hits the earth in the form of sunlight in one hour to meet all human civilization’s energy needs for an entire year.

Yulia Puskhar, a biophysicist and professor of physics in Purdue’s College of Science, may have a way to harness that energy by mimicking plants.

WARREN, Mich. – Starting today, General Motors Co. (NYSE: GM) is gathering hundreds of employees, dealers, investors, analysts, media and policymakers to share details of its strategy to grow the company’s electric vehicle (EV) sales quickly, efficiently and profitably.

“Our team accepted the challenge to transform product development at GM and position our company for an all-electric future,” said Mary Barra, GM chairman and CEO. “What we have done is build a multi-brand, multi-segment EV strategy with economies of scale that rival our full-size truck business with much less complexity and even more flexibility.”

The heart of GM’s strategy is a modular propulsion system and a highly flexible, third-generation global EV platform powered by proprietary Ultium batteries. They will allow the company to compete for nearly every customer in the market today, whether they are looking for affordable transportation, a luxury experience, work trucks or a high-performance machine.

Humans can do lots of things that plants can’t do. We can walk around, we can talk, we can hear and see and touch. But plants have one major advantage over humans: They can make energy directly from the sun.

That process of turning sunlight directly into —called —may soon be a feat humans are able to mimic to harness the sun’s energy for clean, storable, efficient fuel. If so, it could open a whole new frontier of clean energy. Enough energy hits the earth in the form of sunlight in one hour to meet all human civilization’s energy needs for an entire year.

Yulia Puskhar, a biophysicist and professor of physics in Purdue’s College of Science, may have a way to harness that energy by mimicking plants.

The BREST-OD-300 reactor is planned to start operating in 2026. A fuel production facility will be built by 2023 and the construction of an irradiated fuel reprocessing module is scheduled to start by 2024, Rosatom said. The design of the lead-cooled reactor is based on the principles of so-called natural safety, which makes it possible to abandon the melt trap.


“The successful implementation of this project will allow our country to become the world’s first owner of the nuclear power technology which fully meets the principles of sustainable development in terms of environment, accessibility, reliability, and efficient use of resources,” said Rosatom’s Director General Alexey Likhachev. “Today, we reaffirm our reputation as a leader in world progress in the nuclear technologies, that offers humanity unique solutions aimed at improving people’s lives,” he added.

According to President of the Kurchatov Institute Mikhail Kovalchuk, the project is aimed at bringing nuclear power to a new level.

Morocco-born Dr Rachid Yazami has lived all over the world, thanks to an invention he made in his first year as a PhD student – the graphite anode – which is one of the key components that make lithium-ion batteries perform so well.

With electric vehicles on the rise, he believes the invention will soon take you everywhere, too.

Yazami’s story starts in the mid-1970s when scientists knew that graphite could help to form molten or powdered lithium into a usable energy storage material but struggled to turn it into a product. In 1983 Yazami and co-author Ph. Touzain cracked the problem by using a solid polymer electrolyte.

Tesla’s NEW Giga Press Is a BIG Game Changer Tesla and big things are inseparable. Be it ambition, idea, or more tangible items, Tesla would rather go big. Perhaps that is due to the many successes the company has racked up in the short time it has existed or just the personality of the CEO, Elon Musk. Whatever the case, Tesla tends to come along and fundamentally change how things are done, just like with its Giga Press. What is a Giga Press and how does it work? Why is it a game changer in the auto making business? Welcome to Tech Archives.

What is a Giga Press?

They are giant machines made by IDRA Group based out in Italy. The name was actually coined by IDRA, not Tesla. Their purpose is die casting large parts in a single piece. If you have a head for figures, Giga Presses produce a clamping forces of between 55000 kilonewtons and 61000 kilonewtons. Giga Presses are the biggest casting machines to ever exist. To get a sense of how massive these machines are, they weigh 410 to 430 tonnes. That is the equivalent of five Space Shuttles. They are the sizes of houses, at 20 meters by 7.5 meters by 6 meters and require dozens of flatbed trucks for transportation. And to get a sense of what a Giga Press does, think of a small plastic toy car. You would notice the chassis is made from a single piece. That is what a Tesla Giga Press tries to achieve. Instead of a chassis that uses up to 70 bolted and welded parts as it is done by all other car makers, the new Tesla chassis will be one solid piece of engineering feat. Tesla’s NEW Giga Press Is a BIGI Game Changer Buckle up because on this channel we will go through all things Tesla, ev, and Elon Musk. Stay tuned for the latest Tesla news and Tesla updates. Click here to subscribe: https://bit.ly/3fjwstS