Toggle light / dark theme

Transportable tiny homes are complex operations, to say the least. Designing them to be sustainable makes building them that much more of an intricate process. First Light Studio, a New Zealand-based architecture group built their own tiny home with help from a local company Build Tiny, Ohariu, checking all of the above boxes. Built to be net-zero through several sustainable features and compact enough to meet all NZTA regulations for mobile homes.

Ohariu was built by First Light Studio and Build Tiny from a client’s brief calling for, “a refined tramping lodge on wheels.” That’s code for hiking, for all us Americans. Since the tiny home would primarily be used for hiking trips and traveling throughout the outdoors, Ohariu was built to be adaptable and versatile above all else. Inside, the living spaces are described by the architects at First Light Studio as being, “more a large and very detailed piece of furniture than a traditional house build, the fit-out [focusing] on the things that are important and necessary.”

Catering to the necessities and casual family pastimes, the tiny home is doused in modular and multifunctional design that’s surrounded by creamy poplar plywood walls and silvery fittings that add a touch of refinement to an otherwise bare interior. Each furniture piece inside Ohariu doubles as storage to maintain an open, clutter-free interior where the tiny home’s family would bond over pastimes like cooking, playing card games, and enjoying the surrounding landscape. Featuring a chef’s kitchen, Ohariu comes with plenty of prep space for cooking and integrates tilt-up tabletops to make even more for when there’s company. Outside, Ohariu is coated in a stealthy ebony corrugate to match its lightweight mobility, supported by aluminum joinery, lights, and utilities that were given the same ebony finish. Ohariu’s roof is asymmetrical with six solar panels lined up on its longer side and a mezzanine bedroom cozying up beneath its sloped short side.

The toilet could turn roughly a pound of solid human waste, the average amount a human poops in a day, into an impressive 50 liters of methane gas, according to Cho. That means it can generate half a kilowatt hour of electricity, enough to drive an electric car for three quarters of a mile.

And because its 2021 — a day and age in which nothing is safe from the world of cryptocurrencies — Cho came up with a virtual currency called Ggool, or “honey” in Korean. Every use of the toilet scores you 10 Ggool per day, which can be used to buy stuff on the university’s campus.

“I had only ever thought that feces are dirty, but now it is a treasure of great value to me,” a postgraduate student Heo Hui-jin who’s both earned and spent Ggool, told Reuters. “I even talk about feces during mealtimes to think about buying any book I want.”

The smart farm: To show just how much these technologies could help farmers, CSU and Food Agility have partnered to create the Global Digital Farm (GDF).

The smart farm will be built at CSU’s Wagga Wagga campus, and it will feature autonomous tractors, harvesters, and other farming robots, as well as AI programs designed to help with farm management and more.

Teachable moments: The plan isn’t for the GDF to simply demonstrate what a smart farm can look like — CSU and Food Agility want to use it to teach Australia’s farmers how to take advantage of all the tech that will be on display.

A new DIY robot called PetBot is a unique development that will help to recycle ordinary plastic bottles. The process is not yet fully automated, and the device does not claim to be used for commercial purposes, but the benefits of its operation are obvious. Built by JRT3D, the PetBot automates the plastic recycling process by cutting PET bottles into the tape and then turning them into filament. The robot combines several mechanics, each of which performs its part of the task. It carries out the two separate processes at the same time using the same stepper motor.


The machine automates the plastic recycling process by cutting PET bottles and turning them into filament.

Safe and readily available water is important for public health, whether it is used for drinking, domestic use, food production, or recreational purposes. Despite the vast quantity of water on Earth, just 2.5% of it is freshwater, and an estimated 785 million people lack a clean source of drinking water. Desalination of seawater could be a vital technology to meet the world’s drinking water needs.

Now, Korean engineers have developed a new desalination technique that takes just minutes to make seawater drinkable. They used a new nanofiber membrane distillation process that could desalinate water with 99.99% efficiency. Engineers believe that commercializing such technology could help humankind cope with the shortage of fresh drinking water in the future.

Amongst the most challenging issues in membrane distillation is membrane wetting that causes the pollution of permeate, reduction in vapor production, and finally, reduction in the performance of the membrane. If a membrane exhibits wetting during membrane distillation operation, the membrane must be replaced.

Eviation, which has been described as the “Tesla of aircraft” for working on the first compelling long-range electric aircraft, has unveiled the production version of its Alice aircraft.

It has a shorter range than previously announced.

After Eviation unveiled the prototype of its Alice aircraft back in 2017, the company attracted a lot of attention and comparison with Tesla because the aircraft was amongst the first all-electric plane that was viable for actual commercial use.

UC Santa Cruz is investigating this method as a possible generator of solar energy that would allow for the saving of 63.5 billion gallons of water from evaporation annually, a massive windfall for a state that sometimes rations water and which regularly suffers from droughts.


If mounted above irrigation canals, the shade of solar panels would reduce evaporation by 63 billion gallons, while generating clean energy.

The world’s animals and wildlife are becoming extinct at a greater rate than at any time in human history. Could technology help to save threatened species?

Read our latest technology quarterly on protecting biodiversity: https://econ.st/3dqdkKN

Listen to our Babbage podcast episode on the biodiversity crisis: https://econ.st/3dqfPww.

Sign up to The Economist’s daily newsletter to keep up to date with our latest stories: https://econ.st/3gJBH8D

Physics World


A device that can generate electricity while desalinating seawater has been developed by researchers in Saudi Arabia and China, who claim that their new system is highly efficient at performing both tasks. The device uses waste heat from the solar cell for desalination, thereby cooling the solar cell. It also produces no concentrated brine as waste, cutting its potential environmental impact.

In many parts of the world, climate change and population growth are putting huge demands on freshwater supplies. In some coastal regions, desalination – removing the salt from brackish water or seawater to turn it into fresh water – is increasingly being used to meet demand. Indeed, there are now around 16000 desalination plants around the world producing about 95 million cubic metres of freshwater every day.

However, current desalination systems can be expensive and energy hungry, producing significant carbon emissions. The process can also produce highly concentrated salt water, or brine, as well as freshwater. This brine can also contain toxic chemicals introduced during the desalination process and if not disposed of properly, it can have negative environmental impacts.