Toggle light / dark theme

MIT Scientists Overcome a Major Bottleneck in Carbon Dioxide Conversion

Study reveals why some attempts to convert the greenhouse gas into fuel have failed, and offers possible solutions.

If researchers could find a way to chemically convert carbon dioxide into fuels or other products, they might make a major dent in greenhouse gas emissions. But many such processes that have seemed promising in the lab haven’t performed as expected in scaled-up formats that would be suitable for use with a power plant or other emissions sources.

Now, researchers at MIT.

New sub-Jupiter-mass exoplanet detected by astronomers

An international team of astronomers using NASA’s Transiting Exoplanet Survey Satellite (TESS) has detected a rocky planet, about half the mass of Earth, in an extraordinarily short 7.7-hour orbit around its parent star.

It’s a reminder that the science of extrasolar planet hunting seems to enter bizarro land with each new discovery. Planetary scientists still haven’t figured out how our own tiny Mercury — which orbits our Sun once every 88 days — actually formed and evolved. So, this iron-rich ultrashort-period (USP) planet, dubbed GJ 367b should really boggle their minds.

It’s completely rocky, unlike most previously detected gaseous hot Jupiters on extremely short stellar orbits. As a result, the tiny planet is estimated to have a surface with temperatures of 1,500 degrees Celsius, hot enough to melt iron; hardly an Earth 2.0.

Full Story:


An international team of astronomers reports the detection of a new sub-Jupiter-mass alien world orbiting an M-dwarf star. The newly found exoplanet, designated OGLE-2014-BLG-0319Lb, turns out to be about half as massive as Jupiter. The discovery was detailed in a paper published December 30 on the arXiv pre-print repository.

Based on the gravitational lens effect, the microlensing method is mainly used to detect planetary and stellar-mass objects regardless of the light they emit. This technique is therefore sensitive to the mass of the objects, rather than their luminosity, which allows astronomers to study objects that emit little or no light at all.

The World’s Fastest Electric Airplane

▶ Check out Brilliant with this link to receive a 20% discount! https://brilliant.org/NewMind.

THE SPIRIT OF INNOVATION
On November 16, 2021, an experimental aircraft called the ‘Spirit of Innovation’, designed by Rolls Royce, would record an average speed of just under 556 km/h or 345mph over a 3km span. The Spirit of Innovation is the world’s fastest, all electric aircraft. It superseded the previous record set by the Siemens eAircraft Extra 330 LE Aerobatic aircraft in 2017 by over 213 km/h or 132 mph, and it also climbed over 60 seconds faster to 3,000 meters or about 10,000 ft.

BUILDING THE AIRCRAFT
The Lycoming engine was replaced by three electric motors and the fuel tank by three battery packs. Combined, the battery packs, motors and control equipment were similar in weight to the existing power plant, however this fully electric system was now capable of outputting around 530hp continuously and almost 1000hp in bursts. By comparison, in a conventional aircraft, the overall weight is reduced as the fuel is used up. To compensate for this, the aircraft was converted to a single-seater to reduce weight further, though at the cost of moving the center of gravity slightly forward.

MOTOR
Designing the propulsion unit for the Spirit Of Innovation was also another major hurdle for the ACCEL team. Not only must the electric motor be compact and powerful, but also possess a high degree of reliability and the ability to tolerate failures, for aviation use. Because no single electric motor was commercially available that would meet these requirements, the team decided on a propulsion configuration composed of a stack of 3 YASA 750R axial flux electric motors coupled by a single shaft running through them. Using 3 of these motors in tandem not only met the power requirements of the ACCEL team but it also offered redundancy against motor failure.

While the entire triple motor system weighed just 111kg or about 244lbs, it was capable of generating around 750kw or 1000hp, though continuous total power was limited to around 210kw or about 280hp, due to thermal constraints.

COOLING

Tarform begins delivering its slick-looking US-built electric motorcycles

Brooklyn, New York-based Tarform Motorcycles began sketching out designs for its slick-looking electric motorcycles almost five years ago. Despite pandemic-related setbacks that delayed production, the company is now beginning deliveries on its first electric motorcycles.

These aren’t just any run-of-the-mill bikes though.

Unlike many of the electric motorcycles we see today that take on a more conventional design intended to please the widest audience, Tarform focused on a more bespoke, hand-made direction from the beginning.

This self-sustainable expanding trailer is a complete solution designed for urban nomads

The need to rejuvenate amidst nature is crucial in stressful times to heal and grow. This has sparked a trend for a nomadic lifestyle without any compromises in living comfort. Yes, I’m talking about the growing popularity of towable trailers, RVs, caravans, and houses on wheels that promote an upbeat mobile lifestyle. So, how will things be, say, a decade or more from now?

Industrial designer Jason Carley imagines a future where the urban lifestyle will be punctuated by life on the road triggered by sky-rocketing living costs and the aging infrastructures that are dependent on ecologically disruptive fuels and technologies. Jason thinks of a time in the year 2035 where nomadic life will revolve around mastery of resources and an efficient mode of travel. Thus comes into the picture this towable trailer that gives love back to nature. Targeted for the young and resilient urban customers, the rig is an accessible retreat to escape from the stresses of life for a few weeks or even months.

This 3D printed portable toilet is made from recycled plastic!

The Throne goes further in its realization of a circular economy by composting the waste produced by users and using this compost locally. Eventually, the teams want to put the technologies and tools in the hands of local communities. When innovation is shared fairly and the carbon footprint created by logistics and shipping of these products can be greatly reduced. The Throne is just one example of the possibilities of what additive manufacturing can do for scaling sustainable design and development – it’s only waste if you waste it!

Designer: Nagami and To:.

New Mach 5 Hypersonic Scramjet Is Powered by Sustainable Green Hydrogen

It’s rare that faster can also equate to greener in the aerospace industry, but that’s the goal of Australian startup Hypersonix has in sight.

The company has developed a new hypersonic satellite launch system that will make launches more accessible and also more sustainable. The technology could one day also help develop hypersonic airliners capable of crossing the Atlantic in a little over an hour.

“At Mach 5 and above, friction caused by molecules flowing over the hypersonic aircraft can generate temperatures in excess of 2,000˚C (3,632˚F),” the company says in a press statement. “Suffice to say that Brisbane-based aerospace engineering start-up, Hypersonix Launch Systems, is choosing its materials to cope with these extremes.”

Computing With Light

There are widely cited forecasts that project accelerating information and communications technology (ICT) energy consumption increases through the 2020’s with a 2018 Nature article estimating that if current trends continue, this will consume more than 20% of electricity demand by 2030. At several industry events I have heard talks that say one of the important limits of data center performance will be the amount of energy consumed. NVIDIA’s latest GPU solutions use 400+W processors and this energy consumption could more than double in future AI processor chips. Solutions that can accelerate important compute functions while consuming less energy will be important to provide more sustainable and economical data centers.

Lightmatter’s Envise chip (shown below) is a general-purpose machine learning accelerator that combines photonics (PIC) and CMOS transistor-based devices (ASIC) into a single compact module. The device uses silicon photonics for high performance AI inference tasks and consumes much less energy than CMOS only solutions and thus helping to reduce the projected power load from data centers.

Full Story:


Lightmatter has a roadmap for even faster processing using more colors for parallel processing channels with each color acting as a separate virtual computer.

Nick said that in addition to data center applications for Envise he could see the technology being used to enable autonomous electric vehicles that require high performance AI but are constrained by battery power, making it easier to provide compelling range per vehicle charge. In addition to the Envise module, Lightmatter also offers optical interconnect technology that it calls Passage.

Lightmatter is making optical AI processors that can provide fast results with less power consumption than conventional CMOS products. Their compute module combines CMOS logic and memory with optical analog processing units useful for AI inference, 0, natural language processing, financial modelling and ray tracing.

/* */