Toggle light / dark theme

Circa 2019 😃


“SolarStratos has an opportunity to push the limits of what we think is humanly possible and prove that renewable energy has the capacity to power our lives while preserving our planet. We are fortunate to energize SolarStratos with SunPower’s industry-leading solar technology and look forward to further showcasing the value of innovative and reliable solar solutions for the world to see.”

The company is also changing the way the whole world thinks about renewable energy
at least, that is their goal. SunPower doesn’t just want to power buildings and farms. They want to use their durable and efficient solar panels for all the types of applications available. They believe that anything that can and needs to be powered, should be powered by natural sources, like the sun.

SunPower has a pioneering legacy of powering unique solar projects. Their high-efficiency solar cells are the driving power for many amazing vehicles. In addition to now supporting the airplane SolarStratos, the company has previously supported the following projects:

I wonder how general this is. Interesting application of AI.


Electric vehicles have the potential to substantially reduce carbon emissions, but car companies are running out of materials to make batteries. One crucial component, nickel, is projected to cause supply shortages as early as the end of this year. Scientists recently discovered four new materials that could potentially help—and what may be even more intriguing is how they found these materials: the researchers relied on artificial intelligence to pick out useful chemicals from a list of more than 300 options. And they are not the only humans turning to A.I. for scientific inspiration.

Creating hypotheses has long been a purely human domain. Now, though, scientists are beginning to ask machine learning to produce original insights. They are designing neural networks (a type of machine-learning setup with a structure inspired by the human brain) that suggest new hypotheses based on patterns the networks find in data instead of relying on human assumptions. Many fields may soon turn to the muse of machine learning in an attempt to speed up the scientific process and reduce human biases.

In the case of new battery materials, scientists pursuing such tasks have typically relied on database search tools, modeling and their own intuition about chemicals to pick out useful compounds. Instead a team at the University of Liverpool in England used machine learning to streamline the creative process. The researchers developed a neural network that ranked chemical combinations by how likely they were to result in a useful new material. Then the scientists used these rankings to guide their experiments in the laboratory. They identified four promising candidates for battery materials without having to test everything on their list, saving them months of trial and error.

3D solar towers circa 2016.


Improving Efficiency

Most solar panels are placed flat on rooftops because they are designed to harness solar energy when the sun is directly overhead. However, when the angle of the sun’s rays hitting the panel changes, traditional panels quickly become less efficient.

To get around this inefficiency, scientists have been experimenting with a variety of new solar cell technologies, including nanoscale 3D structures to trap light and increase the amount of solar energy absorbed. However in a new study in Energy and Environmental Science, a team of MIT researchers has taken a different approach by changing the shape of the solar panels. The researchers were able to develop a 3D shape that allows for 20 times greater power output.

In a press statement, EdisonFuture said the EF1-T, as well as a van version of the vehicle called the EF1-V, feature “a uniquely designed solar mosaic technology that provides a stunning visual signature while also harnessing the power of the sun to recharge the batteries, enabling work vehicles to continuously charge while in the field.”

Bizarrely, as far as we can tell, the automaker hasn’t actually released any information regarding the battery size, range, or solar charging specifications of the EF1-T, though a prototype of the vehicle is due to go on display at the LA Auto Show in mid-November, so we may learn more information then. EdisonFuture also said it will begin accepting reservations for the pickup during the show.

While we’re likely pretty far off seeing vehicles that run solely on solar power, we’re increasingly seeing pickups and cars fitted with solar panels as the technology matures, allowing for added range figures that aren’t negligible. Dutch automaker Lightyear 0 for example, states on its website that its Lightyear One car can add 7 miles (12 km) of range per hour via solar charging. Lightyear eventually aims to develop vehicles that can go months without needing to charge via conventional means. Stay posted to learn more about the range figures of the EF1-T when we find out more in the very near future.

Like weather forecasting, disease forecasting needs to be statistical.

While we cannot predict in advance exactly how many hurricanes will occur this year or how bad they will be, we know with great confidence that climate change is a risk factor increasing the frequency and severity of hurricanes. Our knowledge of this and all the other risk factors for hurricanes allows us to make a statistical prediction for the coming season.

Similarly, we have known for decades that ther
 See more.


I’ve written before about the need for infectious disease intelligence and whether or not we can insure against damages from future outbreaks. Both ideas assume that epidemics can, to some extent, be predicted. But can they?

Hertz CEO Mark Fields revealed that its deal to supply Tesla vehicles to Uber includes an option for 100,000 more Tesla Model 3s, which would double its total order to 200,000 vehicles.

Earlier this week, Hertz announced that it ordered 100,000 Model 3 vehicles from Tesla as part of a new plan to electrify its fleet.

In the last few days, we have been learning more about this deal.

The emission-free aircraft will carry up to 76 passengers.

A new aviation partnership could see commercial hydrogen-electric airliners take to the skies. The parent company of Alaska Airlines, Alaska Air Group, is partnering with zero-emission aviation firm ZeroAvia to develop a hydrogen-electric powertrain for a 76-seater passenger airliner, a press statement reveals.

The two companies say that their ZA2000 hydrogen-electric powertrain will have a power output of 2,000–5,000 kW and a range of 500 miles (804 km). The powertrain will initially be fitted into a full-size De Havilland Q400 aircraft. Alaska Air also announced it has invested in ZeroAvia with a view to helping it meet its goal of net-zero emissions by 2040.

PERHAPS THE MOST PROMISING ROUTE TO FUSION uses Boron instead, reqiring higher temperatures atainable by chirped lasers—using a widely available fuel, and an output which can be turned directly into energy without the need for steam turbines, etc.

“when it’s finally deployed on electric grids, humanity can leave uranium, coal, oil, and gas in the ground. We won’t need to drill for geothermal energy, or line our hills with unrecyclable wind turbines. It won’t matter if the sun isn’t shining or the wind isn’t blowing
”


Using super powerful lasers to create clean, emission-less energy, HB11 Energy is expanding options for commercial nuclear fusion.