Toggle light / dark theme

The Ocean’s Secret Power Source — 2.5x Stronger Than Wind!

As the world races to move away from fossil fuels, new research has uncovered an extraordinary and nearly untapped energy source hiding in plain sight— ocean currents. According to a landmark study by researchers at Florida Atlantic University (FAU), ocean currents can generate 2.5 times more power than wind farms. Even more stunning is their near-constant energy flow, making them one of the most reliable clean energy sources on Earth.

This isn’t a distant dream or a futuristic concept—it’s science-backed, data-verified, and happening now.

Ocean currents are massive, steady flows of water driven by a mix of wind, the Earth’s rotation, temperature gradients, and salinity differences. Unlike wind or solar energy, which vary with weather and daylight, ocean currents flow predictably and consistently year-round.

New tech could remove 90% of ocean plastic by 2040 —

And its already removed over 84,000 kg of ocean trash.

The Ocean Cleanup, a non-profit environmental organization, has embarked on a groundbreaking mission to eliminate 90% of floating ocean plastic by 2040.

Through innovative technology and a two-pronged approach—removing plastic already polluting the oceans and intercepting new waste in rivers—the project is making real progress.

Their ocean cleanup systems, including the latest System 3, are actively harvesting waste from the Great Pacific Garbage Patch, while river-based Interceptors are stopping plastic at the source in high-impact areas like Southeast Asia and the Caribbean.

With over 84,000 kilograms of plastic removed and more than 2,700 square kilometers of ocean cleaned as of mid-2022, The Ocean Cleanup has already made significant strides. Backed by scientific research, partnerships with companies like Coca-Cola and Maersk, and global support, the organization is scaling up its efforts. Targeting the world’s 1,000 most polluting rivers, The Ocean Cleanup aligns closely with the United Nations’ Sustainable Development Goal 14—conserving marine life. Through technology, collaboration, and determination, they’re turning the tide on ocean pollution.

Learn more.


Scientists achieve record-shattering results after testing limitless energy device: ‘Experiments will continue with increased power’

In a groundbreaking leap toward cleaner, more affordable energy, scientists in France held a fusion reaction steady for over 22 minutes — shattering the previous world record. If that number sounds insignificant, here’s why it’s a big deal: That is 1,337 seconds of controlled, blazing-hot plasma, the critical ingredient needed to power nuclear fusion, a nearly limitless energy source that does not rely on polluting fuels like gas, coal, or oil.

This milestone brings us one step closer to a dream energy future: one where our homes, cities, and electric cars are powered by a technology that mimics the sun — minus the radioactive waste and environmental damage of traditional nuclear power.

Nuclear fusion has the capability to solve a major problem with polluting energy sources. Right now, our power mostly comes from dirty energy that pollutes the air and contributes to extreme weather. While solar and wind energy are gaining momentum, fusion offers something different: the possibility of continuous, around-the-clock clean energy using hydrogen — the most common element in the universe — as fuel.

Ink engineering approach boosts efficiency and cuts cost of quantum dot-based photovoltaics

Colloidal quantum dots (CQDs) are tiny semiconductor particles that are just a few nanometers in size, which are synthesized in a liquid solution (i.e., colloid). These single-crystal particles, created by breaking down bulk materials via chemical and physical processes, have proved to be promising for the development of photovoltaic (PV) technologies.

Quantum dot-based PVs could have various advantages, including a tunable bandgap, greater flexibility and solution processing. However, quantum dot-based developed so far have been found to have significant limitations, including lower efficiencies than conventional silicon-based cells and high manufacturing costs, due to the expensive processes required to synthesize conductive CQD films.

Researchers at Soochow University in China, the University of Electro-Communications in Japan and other institutes worldwide recently introduced a new method that could potentially help to improve the efficiencies of quantum-dot based photovoltaics, while also lowering their manufacturing costs. Their proposed approach, outlined in a paper published in Nature Energy, entails the engineering of lead sulfide (PbS) CQD inks used to print films for solar cells.

Scientists Witness Living Plant Cells Build Their Own Cell Walls for the First Time

In a breakthrough with promising real-world applications, a team of Rutgers biophysicists, bioengineers, and plant biologists has captured the first live images.

In a groundbreaking study, researchers at Rutgers University-New Brunswick have captured continuous, 24-hour images of cellulose synthesis, the process by which plant cell walls are built, using living plant cells. This marks the first time the dynamic process of cell-wall construction has been observed in real time, offering critical insights that could lead to the development of more resilient crops, enhanced food production, and lower-cost biofuels.

Published in the journal Science Advances.

New sub-Neptune exoplanet orbiting nearby star detected

Using the radial velocity method, an international team of astronomers has discovered a new extrasolar planet orbiting a nearby star known as GI 410. The newfound alien world was classified as a sub-Neptune exoplanet with a mass of at least 8.4 Earth masses. The discovery was reported April 4 on the pre-print server arXiv.

The radial velocity (RV) method of detecting an exoplanet is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an unseen exoplanet as it orbits the star. Thanks to this technique, more than 600 exoplanets have been detected so far.

Now, a group of astronomers led by Andres Carmona of the Grenoble Alpes University in France reports another detection using the RV technique. The discovery was made with the SPIRou near-infrared spectropolarimeter at the Canada–France–Hawaii Telescope (CFHT). The observations were complemented by data from the optical velocimeter SOPHIE at the Haute-Provence Observatory.

/* */