Toggle light / dark theme

Scientists develop new approach to analyze 3D structure of lab-made photosynthetic antenna

Humans can do plenty, but plants have an ability we don’t: they make energy straight from sunlight, a superpower called photosynthesis. Yet new research shows that scientists are closing that gap.

Osaka Metropolitan University researchers have revealed the 3D structure of an artificial photosynthetic antenna protein complex, known as light-harvesting complex II (LHCII), and demonstrated that the artificial LHCII closely mirrors its natural counterpart. This discovery marks a significant step forward in understanding how plants harvest and manage , paving the way for future innovations in artificial .

The researchers, led by Associate Professor Ritsuko Fujii and then graduate student Soichiro Seki of the Graduate School of Science and Research Center for Artificial Photosynthesis, had their study published in PNAS Nexus.

Artificial enzyme splits water more efficiently

Mankind is facing a central challenge: It must manage the transition to a sustainable and carbon dioxide-neutral energy economy.

Hydrogen is considered a promising alternative to fossil fuels. It can be produced from water using electricity. If the electricity comes from , it is called green . But it would be even more sustainable if hydrogen could be produced directly with the energy of sunlight.

In nature, light-driven water splitting takes place during photosynthesis in plants. Plants use a complex molecular apparatus for this, the so-called photosystem II. Mimicking its active center is a promising strategy for realizing the sustainable production of hydrogen. A team led by Professor Frank Würthner at the Institute of Organic Chemistry and the Center for Nanosystems Chemistry at Julius-Maximilians-Universität Würzburg (JMU) is working on this.

Multifunctional solar cells: Ferroelectric domain manipulation enhances electric output in perovskite crystals

A team of researchers has made an advancement in the field of multifunctional energy harvesting. Their latest study advances in understanding the photovoltaic effect in ferroelectric crystals.

The article, “Study on Influence of AC Poling on Bulk Photovoltaic Effect in Pb(Mg1/3 Nb2/3)O3-PbTiO3 Single Crystals,” published in Advanced Electronic Materials, reports the team’s recent research results regarding improving the electric output of the bulk photovoltaic effect (BPVE) via manipulation of ferroelectric domains in oxide perovskite crystals.

In ordinary , the mechanism of harvesting the solar energy and then converting them into green electricity is based on the formation of p-n junctions of semiconductors. While the p-n junction has been invented for more than a century, widely used in the silicon industry nowadays, the BPVE is a more recently discovered physical phenomenon from the 1960s–1970s.

Discarding a long-standing pessimistic hypothesis to rescue next-generation lithium-ion battery technology

In a megascience-scale collaboration with French researchers from College de France and the University of Montpellier, Skoltech scientists have shown a much-publicized problem with next-generation lithium-ion batteries to have been induced by the very experiments that sought to investigate it. Published in Nature Materials, the team’s findings suggest that the issue of lithium-rich cathode material deterioration should be approached from a different angle, giving hope for more efficient lithium-ion batteries that would store some 30% more energy.

Efficient energy storage is critical for the transition to a low-carbon economy, whether in grid-scale applications, electric vehicles, or portable devices. Lithium-ion batteries remain the best-developed electrochemical storage technology and promise further improvements. In particular, next-generation batteries with so-called lithium-rich cathodes could store about one-third more energy than their state-of-the-art counterparts with cathodes made of lithium nickel manganese cobalt oxide, or NMC.

A key challenge hindering the commercialization of lithium-rich batteries is voltage fade and capacity drop. As the battery is repeatedly charged and discharged in the course of normal use, its cathode material undergoes degradation of unclear nature, causing gradual voltage and capacity loss. The problem is known to be associated with the reduction and oxidation of the in NMC, but the precise nature of this redox process is not understood. This theoretical gap undermines the attempts to overcome voltage fade and bring next-generation batteries to the market.

Reusing old oil and gas wells may offer green energy storage solution

Moving from fossil fuels to renewable energy sources like wind and solar will require better ways to store energy for use when the sun is not shining or the wind is not blowing. A new study by researchers at Penn State has found that taking advantage of natural geothermal heat in depleted oil and gas wells can improve the efficiency of one proposed energy storage solution: compressed-air energy storage (CAES).

The researchers recently published their findings in the Journal of Energy Storage.

CAES plants compress air and store it underground when is low and then extract the air to create electricity when demand is high. But startup costs currently limit commercial development of these projects, the scientists said.

Tesla Robotaxi Spotted Driving Autonomously at Giga Texas

Fueling excitement, Tesla’s Cybercab was spotted navigating the expansive grounds of Gigafactory Texas autonomously. Tesla Cybercab, also labeled as the Robotaxi, was unveiled by CEO Elon Musk in October 2024, during the ‘We Robot’ event in California. The two-seat vehicle has no steering wheel or pedals – it represents Tesla’s end goal for a completely autonomous transportation network.

The Cybercab has butterfly doors that open automatically, a hatchback layout for the cargo room, and an inductive charging technique that eliminates the need for conventional charging ports. Tesla expects to start production of the Cybercabs before 2027, and the price is estimated at $30,000.

The Tesla CyberCab is an autonomous vehicle that Tesla plans to use in its upcoming ride-hailing system. The CyberCab represents its distinct vehicle type because it is specially designed without any human driver functionalities for enhanced efficiency combined with premium passenger comfort and an extended product life span.

Electrocatalytic sterilization: Nanowires produce localized highly alkaline microenvironments to kill bacteria

Harmful microorganisms such as bacteria represent one of the largest threats to human health. Efficient sterilization methods are thus a necessity.

In the journal Angewandte Chemie, a research team has now introduced a novel, sustainable, electrocatalytic method based on electrodes covered with copper oxide nanowires. These generate very strong local electric fields, thereby producing highly alkaline microenvironments that efficiently kill bacteria.

Conventional disinfection methods, such as chlorination, treatment with ozone, hydrogen peroxide oxidation, and irradiation with have disadvantages, including harmful by-products and high energy consumption.

Cross-linker additive boosts organic solar cell lifespan by 59%

An international team of researchers affiliated with UNIST has unveiled a novel cross-linker additive that significantly addresses the longstanding stability issues associated with organic solar cells, also known as organic photovoltaics (OPVs).

With the incorporation of just 0.05% of this cross-linking agent, the lifespan of OPVs can be improved by over 59%. Industry analysts suggest this breakthrough brings the commercialization of OPVs—regarded as next-generation solar cells—closer to reality.

Led by Professor BongSoo Kim in the Department of Chemistry at UNIST, the research team, in collaboration with researchers from the University of California, Santa Barbara (UCSB), the University of Lille in France, and the French National Center for Scientific Research (CNRS), identified the operational principles of this innovative cross-linker using a variety of advanced analytical techniques.

Nickel-based cathodes may pave a path to safer, high-energy electric vehicle batteries

Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges.

However, nickel is less stable than other materials with respect to cycle life, , and safety. Researchers from the University of Texas at Austin and Argonne National Laboratory aim to change that with a new study that dives deeply into nickel-based cathodes, one of the two electrodes that facilitate in batteries.

“High-nickel cathodes have the potential to revolutionize the EV market by providing longer driving ranges,” said Arumugam Manthiram, a professor at the Walker Department of Mechanical Engineering and Texas Materials Institute and one of the leaders of the study published in Nature Energy.