Toggle light / dark theme

The loss of life would be equivalent to six planes, each carrying 200 passengers, killing everyone on board, every year.

Reducing air pollution from road transport will save thousands of lives and improve the health.

In our published research we evaluated the costs and benefits of a rapid transition. In one scenario, Australia matches the pace of transition of world leaders such as Norway. The modeling estimates this would save around 24,000 lives by 2042. Over time, the resulting greenhouse emission reductions would almost equal Australia’s current total annual emissions from all sources.

We also calculated the total costs and benefits through to 2042. Australia would be about 148 billion Australian dollars better off overall with a rapid transition.

The U.S.-based facility hopes to capture CO2, roughly the equivalent of 5 million return flights between London and New York annually.

A U.S. climate tech company has developed a project that could remove millions of tonnes of carbon dioxide from the atmosphere annually.

CarbonCapture Inc. has revealed plans for the largest carbon capture facility in the world in Wyoming, in an exclusive partnership with premier carbon storage company Frontier Carbon Solutions, according to a press release published by Business Wire last week.

The steel structures will be fabricated at Westcon’s shipyard in Florø and then transported to Dommersnes Industrial Area for complete assembly and testing. The complete turbine is then towed to Bokn, where it will be installed.

SeaTwirl has been around for a while now. In July 2015, the company first deployed its prototype named S1 off the coast of Lysekil in Sweden. The S1 is a small, 30-kW test version of its floating turbine technology. Rising 13 meters above the waterline and reaching down 18 meters below, it offers energy-producing companies an attractive test platform for offshore wind power and an alternative to diesel generators in remote areas that are off-grid or prone to power outages. It’s been connected to the grid and tested according to plan since its deployment. S1 has withstood harsh weather conditions, autumn and winter storms reaching hurricane wind speeds.

SeaTwirl describes its design as simple and robust, with a minimum of breakable moving parts, which means less downtime and more output. It is a vertical-axis wind turbine that has a high structural limit and can be built larger than horizontal-axis wind turbines.

According to 130,000 years’ worth of data on what mammals have been eating, we’re in the midst of a mass biodiversity crisis. Not great!

This revelation was borne of a new study, conducted by an international team of researchers and published in the journal Science, that used machine learning to paint a detailed past — and harrowing future — of what happens to food webs when land mammals go extinct. Spoiler alert: it’s pretty grim stuff.

“While about 6 percent of land mammals have gone extinct in that time, we estimate that more than 50 percent of mammal food web links have disappeared,” Evan Fricke, ecologist and lead author of the study, said in a press release. “And the mammals most likely to decline, both in the past and now, are key for mammal food web complexity.”

This is also the fastest IPMSM built with commercialized lamination materials.

Researchers at the University of New South Wales Sydney have developed a new electric motor that can clock 100,000 revolutions per minute. The high power density achieved as a result of this new design could help reduce the weight of electric vehicles (EVs) and thereby increase their range, a university press release said.

EV makers around the world have been looking for ways to address the range anxiety of their battery-powered vehicles. One of the options is to increase the size of the battery pack, which also increases the weight of the vehicle, creating more problems to solve.

Australian researchers have developed and tested a way to electrolyze hydrogen straight out of the air, anywhere on Earth, without requiring any other fresh water source. The Direct Air Electrolyzer (DAE) absorbs and converts atmospheric moisture – even down to a “bone-dry” 4% humidity.

Such a machine could be particularly relevant to a country like Australia, which has ambitions as a clean energy exporter, along with enormous solar energy potential – but also widespread drought conditions and limited access to clean water. Decoupling hydrogen production from the need for a water supply could allow green hydrogen to be produced more or less anywhere you can ship it out from – and since water scarcity and solar potential often go hand in hand, this could prove a boon for much of Africa, Asia, India and the Middle East, too.

Chemical engineers at Melbourne University came up with what they describe as a simple design: an electrolyzer with two flat plates acting as anode and cathode. Sandwiched between the two plates is a porous material – melamine sponge, for example, or sintered glass foam. This medium is soaked in a hygroscopic ionic solution – a chemical that can absorb moisture from the air spontaneously.