Toggle light / dark theme

As climate change and global population growth pose ever greater challenges for agriculture, Israeli technology offers a wealth of inventions and advanced tools to help farmers adapt.

Interested in licensing this video? Get in touch 👉 http://u.afp.com/wvnD
N.B.: AFP’s services and content are for professional use only.

Earlier this year, two-layer solar cells broke records with 33 percent efficiency. The cells are made of a combination of silicon and a material called a perovskite. However, these tandem solar cells are still far from the theoretical limit of around 45 percent efficiency, and they degrade quickly under sun exposure, making their usefulness limited.

The process of improving tandem solar cells involves the search for the perfect materials to layer on top of each other, with each capturing some of the sunlight the other is missing. One potential material for this is perovskites, which are defined by their peculiar rhombus-in-a-cube crystal structure. This structure can be adopted by many chemicals in a variety of proportions. To make a good candidate for tandem solar cells, the combination of chemicals needs to have the right bandgap—the property responsible for absorbing the right part of the sun’s spectrum—be stable at normal temperatures, and, most challengingly, not degrade under illumination.

The number of possible perovskite materials is vast, and predicting the properties that a given chemical composition will have is very difficult. Trying all the possibilities out in the lab is prohibitively costly and time-consuming. To accelerate the search for the ideal perovskite, researchers at North Carolina State University decided to enlist the help of robots.

A recent press release from the Public Utility Commission of Texas (PUCT) has revealed that Tesla will be providing Virtual Power Plant (VPP) services to the state’s grid. The program is part of the Aggregate Distributed Energy Resource (ADER) project that the PUCT pushed last year.

With the VPP in place, Texas could now evaluate how consumer-owned small energy devices, such as home battery units, can be virtually aggregated to provide grid-scale services. Similar programs have been launched by Tesla in California and Australia, to much success.

As per the PUCT’s press release, the two ADERs that are launching the initiative involve Tesla Electric customers who have Powerwall batteries in their homes. The participants of the program have agreed to sell their surplus power in the ERCOT market, and will be compensated for doing so. One ADER is comprised of Houston-area CenterPoint Energy customers, while the other is comprised of Dallas-area customers served by Oncor Electric Delivery Company.

SBUDNIC was a small cube satellite, about the size of a bread loaf, that was launched on a SpaceX rocket in May 2022.

Space junk is a serious issue that threatens the safety and sustainability of orbital activities. To address this problem, a team of students from Brown University designed and built a low-cost cube satellite that successfully deorbited itself after completing its mission. The satellite, named SBUDNIC, used a simple plastic drag sail to increase its atmospheric drag and hasten its reentry.

As per the press release, the small cube satellite has burned up high above Turkey after 445 days in orbit. Its reentry into Earth’s atmosphere on Tuesday, Aug. 8, marked the successful conclusion of a low-cost experiment aimed at reducing space debris, five years ahead of schedule.

Recycling is now cheaper than mining.


Sandy visits the teams at RecycLiCo Battery Materials and Kemetco Research for an in-depth discussion on battery recycling and a tour of a facility that’s making this dream a reality.

Purchase the book here: https://www.routledge.com/Hydrometallur-gical-Recycling-of-L
1032216027

Meyers Manx, the original maker of the Volkswagen Beetle-based, fiberglass-bodied beach buggy from the 1960s, just published the starting price for its all-new, all-electric Manx 2.0 electric buggy, and it’s not exactly cheap.

Revealed last year at The Quail, A Motorsports Gathering, the company’s first all-new vehicle in nearly 20 years starts at $74,000 for the base variant with the 20-kilowatt-hour battery pack and yet-to-be-released performance figures. That’s almost as expensive as the recently introduced Tesla Model S Standard Range, which starts at $78,490 and offers a 320-mile range.

The base MSRP came with no extra information and was casually thrown in a sentence at the end of the press release for the company’s new Resorter Neighborhood Electric Vehicle (NEV), which debuted last week at The Quail, so we still don’t know how much the top-of-the-line model will set prospective customers back.

In a recent advance, researchers have created a novel battery charger that can support present and future generations of battery packs for EVs across a vast range of voltages: anything between 120 and 900 volts. The new tech is described in a study published in the September edition of theIEEE Transactions on Power Electronics.


These next-generation batteries will bring shorter charging times while also weighing less, which means that EVs can be ready to drive sooner and travel farther on a full charge. “However, charging these high-voltage batteries with existing chargers degrades the efficiency, due to operating at twice the rated voltage,” says Deepak Ronanki, an assistant professor at the Indian Institute of Technology Madras, in Chennai, India, and an IEEE senior member who was involved in the study.

Ronanki and doctoral research scholar Harish Karneddi created a universal charger capable of supporting voltages between 120 and 900 V—something they say had not yet otherwise been achieved.

Ronanki and Karneddi’s battery charger is actually a two-stage charger, with a front-end boost-buck power factor correction (PFC) circuit followed by a reconfigurable DC-DC converter. As the term “boost-buck” suggests, the battery charger can boost the voltage when the battery voltage is greater than the input voltage and, conversely, buck the voltage when the battery voltage is less than the input voltage.

People living in dry but foggy areas can benefit from this technology.

Researchers from ETH Zurich have developed a system that captures fog in the atmosphere and simultaneously removes contaminants while running using solar power.

The harvesting and water treatment system consists of a metal wire mesh with a solar-light-activated reactive coating that captures the fog. The droplets of water then trickle down into a container below. The mesh is coated with a mixture of specially selected polymers and titanium dioxide, which acts as a chemical catalyst and breaks down the molecules of the pollutants into harmless particles.

Flexible polymers made with a new generation of the Nobel-winning “click chemistry” reaction find use in capacitors and other applications.

Society’s increasing demand for high-voltage electrical technologies – including pulsed power systems, cars, electrified aircraft, and renewable energy applications – requires a new generation of capacitors that store and deliver large amounts of energy under intense thermal and electrical conditions.

A new polymer-based device that efficiently handles record amounts of energy while withstanding extreme temperatures and electric fields has now been developed by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Scripps Research. The device is composed of materials synthesized via a next-generation version of the chemical reaction for which three scientists won the 2022 Nobel Prize in Chemistry.