Menu

Blog

Archive for the ‘sustainability’ category: Page 139

Jun 25, 2023

This salty gel could harvest water from desert air

Posted by in categories: materials, sustainability

MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions.

As the material absorbs water vapor, it can swell to make room for more moisture. Even in very dry conditions, with 30 percent relative humidity, the material can pull vapor from the air and hold in the moisture without leaking. The water could then be heated and condensed, then collected as ultrapure water.

The transparent, rubbery material is made from hydrogel, a naturally absorbent material that is also used in disposable diapers. The team enhanced the hydrogel’s absorbency by infusing it with lithium chloride — a type of salt that is known to be a powerful dessicant.

Jun 25, 2023

‘Farming in Our Curriculum’: How I Transformed My School Campus Into an Organic Farm

Posted by in categories: education, food, sustainability

Suseela Santhosh, director of Vishwa Vidyapeeth school in Bengaluru started an organic farm in her school that feeds its 1,400 students and staff for free.

Jun 25, 2023

Passive cooling system could benefit off-grid locations

Posted by in categories: food, solar power, sustainability

As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water.

The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.

Jun 24, 2023

Porsche is developing an exclusive electric sports boat

Posted by in categories: sustainability, transportation

With ambitious goals of being a leader in sustainable mobility, Porsche has joined forces with Frauscher Shipyard in Austria to engineer an electric yacht that is also intended to set standards on the water with its typical Porsche E-Performance. The vehicle is called the Frauscher x Porsche 850 Fantom Air highlighting the collaboration that made it possible.


Porsche.

This is according to a press release by the carmaker published on Saturday.

Continue reading “Porsche is developing an exclusive electric sports boat” »

Jun 24, 2023

Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems

Posted by in categories: energy, nanotechnology, sustainability, wearables

The rapid development of wearable electronics requires its energy supply part to be flexible, wearable, integratable and sustainable. However, some of the energy supply units cannot meet these requirements at the same time, and there is also a capacity limitation of the energy storage units, and the development of sustainable wearable self-charging power supplies is crucial. Here, we report a wearable sustainable energy harvesting-storage hybrid self-charging power textile. The power textile consists of a coaxial fiber-shaped polylactic acid/reduced graphene oxide/polypyrrole (PLA-rGO-PPy) triboelectric nanogenerator (fiber-TENG) that can harvest low-frequency and irregular energy during human motion as a power generation unit, and a novel coaxial fiber-shaped supercapacitor (fiber-SC) prepared by functionalized loading of a wet-spinning graphene oxide fiber as an energy storage unit. The fiber-TENG is flexible, knittable, wearable and adaptable for integration with various portable electronics. The coaxial fiber-SC has high volumetric energy density and good cycling stability. The fiber-TENG and fiber-SC are flexible yarn structures for wearable continuous human movement energy harvesting and storage as on-body self-charging power systems, with light-weight, ease of preparation, great portability and wide applicability. The integrated power textile can provide an efficient route for sustainable working of wearable electronics.

Jun 24, 2023

Perovskite solar cells set new world record for power conversion efficiency

Posted by in categories: solar power, sustainability

Perovskite solar cells designed by a team of scientists from the National University of Singapore (NUS) have attained a world record efficiency of 24.35% with an active area of 1 cm2. This achievement paves the way for cheaper, more efficient and durable solar cells.

To facilitate consistent comparisons and benchmarking of different solar cell technologies, the photovoltaic (PV) community uses a standard size of at least 1 cm2 to report the efficiency of one-sun in the “Solar cell efficiency tables.” Prior to the record-breaking feat by the NUS team, the best 1 cm2 recorded a of 23.7%. This ground-breaking achievement in maximizing from next-generation will be crucial to securing the world’s energy future.

Perovskites are a class of materials that exhibit high light absorption efficiency and ease of fabrication, making them promising for solar cell applications. In the past decade, perovskite solar cell technology has achieved several breakthroughs, and the technology continues to evolve.

Jun 24, 2023

New Study could help Unlock ‘Game-Changing’ Batteries for Electric Vehicles and Aviation

Posted by in categories: chemistry, energy, engineering, sustainability, transportation

Significantly improved electric vehicle (EV) batteries could be a step closer thanks to a new study led by University of Oxford researchers, published today in Nature. Using advanced imaging techniques, this revealed mechanisms which cause lithium metal solid-state batteries (Li-SSBs) to fail. If these can be overcome, solid-state batteries using lithium metal anodes could deliver a step-change improvement in EV battery range, safety and performance, and help advance electrically powered aviation.

One of the co-lead authors of the study Dominic Melvin, a PhD student in the University of Oxford’s Department of Materials, said: ‘Progressing solid-state batteries with lithium metal anodes is one of the most important challenges facing the advancement of battery technologies. While lithium-ion batteries of today will continue to improve, research into solid-state batteries has the potential to be high-reward and a gamechanger technology.’

Li-SSBs are distinct from other batteries because they replace the flammable liquid electrolyte in conventional batteries with a solid electrolyte and use lithium metal as the anode (negative electrode). The use of the solid electrolyte improves the safety, and the use of lithium metal means more energy can be stored. A critical challenge with Li-SSBs, however, is that they are prone to short circuit when charging due to the growth of ‘dendrites’: filaments of lithium metal that crack through the ceramic electrolyte. As part of the Faraday Institution’s SOLBAT project, researchers from the University of Oxford’s Departments of Materials, Chemistry and Engineering Science, have led a series of in-depth investigations to understand more about how this short-circuiting happens.

Jun 23, 2023

Flow of water on a carbon surface is governed by quantum friction, says study

Posted by in categories: computing, nanotechnology, particle physics, quantum physics, sustainability

Water and carbon make a quantum couple: the flow of water on a carbon surface is governed by an unusual phenomenon dubbed quantum friction. A new work published in Nature Nanotechnology experimentally demonstrates this phenomenon—which was predicted in a previous theoretical study—at the interface between liquid water and graphene, a single layer of carbon atoms. Advanced ultrafast techniques were used to perform this study. These results could lead to applications in water purification and desalination processes and maybe even to liquid-based computers.

For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice. Now, an international team of researchers from the Max Plank Institute for Polymer Research of Mainz (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), and the University of Manchester (England), reports in the study published in Nature Nanotechnology on June 22, 2023, that water can interact directly with the carbon’s electrons—a quantum phenomenon that is very unusual in .

A liquid, such as water, is made up of that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms—the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification.

Jun 23, 2023

Tesla Dominates List Of Most American-Made Vehicles Sold In US

Posted by in categories: sustainability, transportation

The most American-made cars sold in the US all come from Tesla, but the car in the number six spot is a bit of a surprise.

Jun 22, 2023

MagLev Aero unveils “breakthrough” HyperDrive eVTOL propulsion system

Posted by in categories: sustainability, transportation

A fascinating eVTOL project is about to come out of stealth, showcasing a “breakthrough HyperDrive propulsion technology” that MagLev Aero claims is “dramatically more quiet, efficient, safe, sustainable and emotionally appealing to the mass market.”

Representatives from the Boston-based company have made their way to the Paris Air Show, where they’re preparing to reveal a very different approach to electric vertical lift aircraft, drawing on the magnetic levitation technology used in high-speed trains.

What we appear to have here is an annular lift fan arrangement. The aircraft’s cabin appears to be surrounded by a huge ring-shaped duct, into which at least one large-diameter, many-bladed fan is mounted.