Emerging technologies such as nanotechnology can provide efficient approaches by which new materials with broad functions, such as durable and fire-retardant properties, can be developed and subsequently used for the treatment of wood materials.
In a study published in the Journal of Bioresources and Bioproducts, an international team from New Zealand (Scion) and China (Northeast Forestry University) report a review that nanotechnology-based methods can be employed to mitigate these weaknesses and create durable, sustainable wood materials.
These wood nanotechnologies also can be employed to develop wood products with antimicrobial surfaces for various applications. Furthermore, analytical tools used in nanoscience and nanotechnology enable the precise study of wood structure and its components on a nanometer scale, particularly those aspects that can affect wood products’ biodeterioration resistance properties.