Toggle light / dark theme

Four minutes. Imagine what you can accomplish in four minutes. Make coffee? Read half an article? Send a few text messages?

For most of us, four minutes pass in a heartbeat. Yet during those same four minutes, a quantum computer recently performed calculations that would have kept a conventional supercomputer busy for 2.6 billion years.

Scientists achieved something magical—compressing billions of years of computation into minutes. Such power shifts our understanding of what’s possible. Quantum computing won’t just change how we process information; it will transform medicine, climate science, materials design, and countless other fields we rely on daily.

Can Tesla REALLY Build Millions of Optimus Bots? ## Tesla is poised to revolutionize robotics and sustainable energy by leveraging its innovative manufacturing capabilities and vertical integration to produce millions of Optimus bots efficiently and cost-effectively ## Questions to inspire discussion ## Manufacturing and Production.

S low model count strategy benefit their production? A: Tesla s speed of innovation and ability to build millions of robots quickly gives them a key advantage in mass producing and scaling manufacturing for humanoid robots like Optimus. + s factory design strategies support rapid production scaling? A: Tesla## Cost and Efficiency.

S vertical integration impact their cost structure? A: Tesla s AI brain in-house, Tesla can avoid paying high margins to external suppliers like Nvidia for the training portion of the brain. +## Technology and Innovation.

S experience in other industries benefit Optimus development? A: Tesla s own supercomputer, Cortex, and AI training cluster are crucial for developing and training the Optimus bot## Quality and Reliability.

S manufacturing experience contribute to Optimus quality? A: Tesla## Market Strategy.

S focus on vehicle appeal relate to Optimus production? A: Tesla## Scaling and Demand.

NVIDIA may have just revolutionized computing forever with the launch of DIGITS, the world’s first personal AI supercomputer. By harnessing the power of GPU-accelerated deep learning—the same technology that drives top-tier high-performance computing (HPC) clusters—DIGITS shrinks massive supercomputing capabilities into a desktop-friendly system.

This compact yet powerful platform enables data scientists, researchers, and developers to rapidly train, test, and refine complex neural networks using NVIDIA’s state-of-the-art GPUs and software ecosystem. Built for deep learning, machine learning, and big data analytics, DIGITS seamlessly integrates tensor cores, parallel processing, and accelerated computing into a single, plug-and-play solution.

A new quantum computing breakthrough has sent shockwaves through the tech world. Researchers at USTC unveiled Zuchongzhi-3, a 105-qubit machine that processes calculations at speeds that dwarf even the most powerful supercomputers. It marks another leap forward in the quest for quantum supremacy, with the team demonstrating computational power orders of magnitude beyond Google’s latest results.

Chinese scientists unveiled a superconducting quantum computer prototype named “Zuchongzhi 3.0” with 105 qubits on Monday (Beijing Time), marking a breakthrough in China’s quantum computing advancements.

The achievement also sets a new record in quantum computational advantage within superconducting systems.

Developed by Chinese quantum physicists Pan Jianwei, Zhu Xiaobo, Peng Chengzhi, etc., “Zuchongzhi 3.0” features 105 readable qubits and 182 couplers. It processes quantum random circuit sampling tasks at a speed quadrillion times faster than the world’s most powerful supercomputer and 1 million times faster than Google’s latest results published in Nature in October 2024.

Zuchongzhi-3, a superconducting quantum computing prototype with 105 qubits and 182 couplers, has made significant advancements in random quantum circuit sampling. This prototype was successfully developed by a research team from the University of Science and Technology of China (USTC).

This prototype operates at a speed that is 1015 times faster than the currently available and one million times faster than the latest results published by Google. This achievement marks a milestone in enhancing the performance of quantum computation, following the success of Zuchongzhi-2. The research findings have been published as the cover article in Physical Review Letters.

Quantum supremacy is the demonstration of a quantum computer capable of performing tasks that are infeasible for classical computers. In 2019, Google’s 53-qubit Sycamore processor completed a random circuit sampling task in 200 seconds, a task that would have taken approximately 10,000 years to simulate on the world’s fastest supercomputer at the time.

Using the Frontier supercomputer, researchers have cracked a major challenge in nuclear physics: accurately predicting nuclear structure and forces at an unprecedented level of detail.

Their discoveries, including new insights into the shape-shifting nature of the 30-neon nucleus, could revolutionize scientific fields ranging from quantum mechanics to national security.

Revolutionizing Nuclear Predictions with Frontier.

Google’s new quantum computer solved a calculation in five minutes that would take longer than the universe’s existence to solve with a regular supercomputer. The time it would take the supercomputer to do the calculation is nearly a million billion times longer than the age of the universe.

PsiQuantum unveiled Omega, a quantum photonic chipset designed for large-scale quantum computing. This development, detailed in a Nature publication, marks a significant milestone in the mass production of quantum chips. Manufactured in partnership with GlobalFoundries at their Albany, New York facility, Omega integrates advanced components essential for constructing million-qubit quantum computers. The chipset employs photonics technology, manipulating single photons for computations, which offers advantages such as simplified cooling mechanisms. PsiQuantum has achieved manufacturing yields comparable to standard semiconductors, producing millions of these chips. The company plans to establish two Quantum Compute Centers in Brisbane, Australia, and Chicago, Illinois, aiming for operational facilities by 2027. This progress positions PsiQuantum at the forefront of the quantum computing industry, alongside other major companies making significant strides in the field. Summary of the paper in Nature: For decades, scientists have dreamed of building powerful quantum computers using light—photonic quantum computers. These machines could solve complex problems far beyond the reach of today’s most advanced supercomputers. However, a major roadblock has been the sheer difficulty of manufacturing the components required at the necessary scale. Now, researchers have developed a manufacturable platform for photonic quantum computing, marking a significant breakthrough. Their system is built using silicon photonics, a technology that integrates optical components directly onto a chip, much like modern semiconductor chips. The team demonstrated key capabilities: * Ultra-precise qubits: They achieved a stunning 99.98% accuracy in preparing and measuring quantum states. * Reliable quantum interference: Independent photon sources interacted with a visibility of 99.50%, crucial for quantum logic operations. * High-fidelity entanglement: A critical quantum process, known as two-qubit fusion, reached 99.22% accuracy. * Seamless chip-to-chip connections: The team linked quantum chips with 99.72% fidelity, a crucial step for scaling up quantum systems. Looking ahead, the researchers highlight new technologies that will further improve performance, including better photon sources, advanced detectors, and high-speed switches. This work represents a major step toward large-scale, practical quantum computing, bringing us closer to a future where quantum machines tackle problems that are impossible today.


PsiQuantum’s focus is now on wiring these chips together across racks, into increasingly large-scale multi-chip systems – work the company is now expanding through its partnership with the U.S. Department of Energy at SLAC National Accelerator Laboratory in Menlo Park, California as well as a new manufacturing and testing facility in Silicon Valley. While chip-to-chip networking remains a hard research problem for many other approaches, photonic quantum computers have the intrinsic advantage that photonic qubits can be networked using standard telecom optical fiber without any conversion between modalities, and PsiQuantum has already demonstrated high-fidelity quantum interconnects over distances up to 250m.

In 2024, PsiQuantum announced two landmark partnerships with the Australian Federal and Queensland State governments, as well as the State of Illinois and the City of Chicago, to build its first utility-scale quantum computers in Brisbane and Chicago. Recognizing quantum as a sovereign capability, these partnerships underscore the urgency and race towards building million-qubit systems. Later this year, PsiQuantum will break ground on Quantum Compute Centers at both sites, where the first utility-scale, million-qubit systems will be deployed.