Toggle light / dark theme

A research team has solved a decades-old mystery as to how Jupiter produces a spectacular burst of X-rays every few minutes.

A research team co-led by UCL (University College London) has solved a decades-old mystery as to how Jupiter produces a spectacular burst of X-rays every few minutes.

The X-rays are part of Jupiter’s aurora — bursts of visible and invisible light that occur when charged particles interact with the planet’s atmosphere. A similar phenomenon occurs on Earth, creating the northern lights, but Jupiter’s is much more powerful, releasing hundreds of gigawatts of energy, enough to briefly power all of human civilization.*.

Two things capture your attention in this spectacular Picture of the Week, which was taken using Hubble’s Wide Field Camera 3 (WFC3): the two enormous galaxies that flank the left and right sides of the image. The galaxy on the left is a lenticular galaxy, which rejoices in the name of 2MASX J03193743+4137580. The side-on spiral galaxy on the right is more simply named UGC 2665. Both galaxies lie approximately 350 million light-years from Earth, and they both form part of the enormous Perseus galaxy cluster.

Perseus is an important figure in Greek mythology, renowned for slaying Medusa the Gorgon — who is herself famous for the unhappy reason that she was cursed to have living snakes for hair. Given Perseus’s impressive credentials, it seems appropriate that the eponymous galaxy cluster is one of the biggest objects in the known Universe, consisting of thousands of galaxies, only a few of which are visible in this image.

The wonderful detail in the image is thanks to the WFC3’s powerful resolution and high sensitivity. The WFC3 is sensitive to both visible and infrared light, so those are the wavelengths that are captured in this image. The Perseus supercluster looks very different at other wavelengths. Whilst in this image the spaces between the galaxies appear dark and peaceful, when the X-ray emission is observed the Perseus cluster appears to be burning with bright intense light.

From above, the Antarctic Ice Sheet might look like a calm, perpetual ice blanket that has covered Antarctica for millions of years. But the ice sheet can be thousands of meters deep at its thickest, and it hides hundreds of meltwater lakes where its base meets the continent’s bedrock. Deep below the surface, some of these lakes fill and drain continuously through a system of waterways that eventually drain into the ocean.

Now, with the most advanced Earth-observing laser instrument NASA has ever flown in space, scientists have improved their maps of these hidden lake systems under the West Antarctic ice sheet—and discovered two more of these active subglacial lakes.

The new study provides critical insight for spotting new subglacial lakes from space, as well as for assessing how this hidden plumbing system influences the speed at which ice slips into the Southern Ocean, adding freshwater that may alter its circulation and ecosystems.

The first 1000 people to use this link will get a 1 month free trial of Skillshare:
https://skl.sh/kurzgesagtinanutshell08211

Sources & further reading:
https://sites.google.com/view/sources-terraform-venus/

Leaving earth to find new homes in space is an old dream of humanity and will sooner or later be necessary for our survival. The planet that gets the most attention is Mars, a small, toxic and energy poor planet that just about seems good enough for a colony of depressed humans huddled in underground cities.

But what if we think bigger? What if we take Venus, one of the most hostile and deadly places in the solar system and turn it into a colony? Not by building lofty cloud cities, but by creating a proper second earth? It might be easier than you think.

As the Shenzhou-12 crew of three taikonauts has lived for nearly three weeks in China’s Tianhe space station core module, the urine treatment system in the module has recycled 66 liters of urine and treated it into distilled water to support the crew, the Global Times learned from the system designers on Tuesday.

This urine treatment system — a sub-system of the life support system — was devised by Chinese scientists with the 206 Research Institute of the Second Academy of the China Aerospace Science and Industry Corp (CASIC). The developers told the Global Times that this is the nation’s first engineering application of the system, and its good performance shows how China’s space station construction work has advanced.

All indicators of the distilled water have reached the standards for usage, and the mission planners have unanimously recognized this outstanding performance, the institute said in a statement it sent to the Global Times.

Methane is an organic molecule that hangs around in Earth’s atmosphere and is mostly produced by living organisms, most notoriously by burping cows. Its detection on Mars, on the other hand, has been a weird mystery for planetary scientists.

In recent years, NASA’s Curiosity rover has picked up tiny traces of methane numerous times on the red planet. While these emissions might be coming from some geological process, it was possible they could indicate the presence of some sort of life form on Mars (unlikely to be cows, of course).

As you’d expect, scientists are really excited by that prospect, but the data are confusing. Higher in the atmosphere, orbiting technology from the European Space Agency (ESA) has detected no methane in any concentration.

Australian scientists will help construct one of the world’s most powerful ground-based telescopes that promises to see further and clearer than the Hubble Space Telescope and unlock mysteries of the early Universe.

The team will develop a new, world-first instrument that will produce images three times sharper than Hubble under the multimillion-dollar project.

The MAVIS instrument will be fitted to one of the eight-meter Unit Telescopes at the European Southern Observatory’s (ESO’s) Very Large Telescope in Chile, to remove blurring from telescope images caused by turbulence in Earth’s atmosphere. MAVIS will be built over seven years at a cost of $57 million.