Toggle light / dark theme

The Parker Solar Probe has matched its own speed and distance records in a recent close encounter with the Sun and is preparing for an even closer approach aided by a Venus flyby.

On September 30, NASAs Parker Solar Probe completed its 21st close approach to the Sun, equaling its own distance record by coming within about 4.51 million miles (7.26 million kilometers) of the solar surface.

The close approach (known as perihelion) occurred at 5:15 UTC — or 12:15 a.m. EDT — with Parker Solar Probe moving 394,700 miles per hour (635,300 kilometers per hour) around the Sun, again matching its own record. The spacecraft checked in on October 3 with mission operators at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland — where the spacecraft was also designed and built — with a beacon tone indicating it was in good health and all systems were operating normally.

For the first time, scientists have taken near-daily measurements of the sun’s global coronal magnetic field, a region of the sun that has only been observed irregularly in the past. The resulting observations are providing valuable insights into the processes that drive the intense solar storms that impact fundamental technologies, and thus lives and livelihoods, here on Earth.

As BepiColombo sped past Mercury during its June 2023 flyby, it encountered a variety of features in the tiny planet’s magnetic field. These measurements provide a tantalizing taste of the mysteries that the mission is set to investigate when it arrives in orbit around the solar system’s innermost planet.

By adding primordial magnetic fields to the Standard Model, researchers may solve the mystery of the Universe’s expansion.

Scientists have suggested a way to resolve a longstanding paradox known as the Hubble tension by taking primordial magnetic fields into account, which may have been generated in the early moments of the Universe.

“Primordial magnetic fields are the fields generated in the early Universe, such as during inflation, phase transitions, and other processes,” explained Yaoyu Li, a physicist at the Purple Mountain Observatory in China and one of the authors of the study. “These magnetic fields might evolve with the expansion of the Universe, be amplified and subsequently become galactic magnetic fields that we observe today.”

AUSTIN (KXAN) — A new exhibit at the Texas Science and Natural History Museum is bringing the McDonald Observatory to the University of Texas campus.

The “Big Eye on Dark Skies” exhibit opened this week on the third floor of the museum, bringing with it a scale model of one of the world’s most powerful telescopes.

The Hobby-Eberly telescope is powered by a 10-meter wide mirror, capable of collecting light from 11 billion years ago. The mirror in the model, 7% the size of the real one, collects light from canned bulbs hanging from a darkened ceiling.

marking a critical milestone in ULA’s path toward certifying the Vulcan Centaur for national security missions with the U.S. Space Force.

The Vulcan VC2S rocket is set to launch the Cert-2 mission from Space Launch Complex-41 at Cape Canaveral Space Force Station, Florida, during a launch window on Friday, October 4, 2024, between 6:00 and 9:00 a.m. EDT.

This mission includes an inert payload and key technology demonstrations for the Centaur V upper stage.

As technology advances, Big Data will play an increasingly important role in protecting Earth from asteroids. By harnessing the power of data analytics, AI, and machine learning, scientists can monitor and predict asteroid movements with greater accuracy than ever before. This enables us to develop early warning systems and potentially deflect asteroids before they can cause harm. Aspiring data scientists interested in contributing to such significant fields can gain the necessary skills by enrolling in a data science course in Chennai, where they can learn to utilize these advanced tools and techniques.

What secrets can Pluto’s moon, Charon, reveal about the formation and evolution of planetary bodies throughout the solar system? This is what a recent study published in Nature Communications hopes to address as an international team of researchers led by the Southwest Research Institute (SwRI) used NASA’s James Webb Space Telescope (JWST) to conduct the first-time detection of hydrogen peroxide and carbon dioxide on Charon’s surface, which adds further intrigue to this mysterious moon, along with complementing previous discoveries of water ice, ammonia-bearing species, and organic materials, the last of which scientists hypothesize could explain Charon’s gray and red surface colors.

“The advanced observational capabilities of Webb enabled our team to explore the light scattered from Charon’s surface at longer wavelengths than what was previously possible, expanding our understanding of the complexity of this fascinating object,” said Dr. Ian Wong, who is a staff scientist at the Space Telescope Science Institute and a co-author on the study.

Detecting hydrogen peroxide is significant since it forms from the broken-up oxygen and hydrogen atoms after water ice is exposed to cosmic rays, solar wind, or solar ultraviolet light. This indicates that the Sun’s activity influences surface processes so far away, with Charon being approximately 3.7 billion miles from the Sun. The researchers determined that Charon’s carbon dioxide serves as a light coating on Charon’s water-ice heavy surface. While the surface of Charon was studied in-depth from NASA’s New Horizons mission in 2015, these new findings provide greater understanding of the physics-based processes responsible for Charon’s unique surface features.

The group’s detector design exploits Cherenkov radiation, a phenomenon in which radiation is emitted when charged particles moving faster than light pass through a particular medium, akin to when crossing the sound barrier. This is also responsible for nuclear reactors’ eerie blue glow and has been used to detect neutrinos in astrophysics laboratories.

The researchers proposed to assemble their device in northeast England and detect antineutrinos from reactors from all over the U.K. as well as in northern France.

One issue, however, is that antineutrinos from the and space can muddle the signal, especially as very distant reactors yield exceedingly small signals—sometimes on the order of a single antineutrino per day.