Lunar rock and zircon ages were reset by a remelting event driven by the Moon’s orbital evolution, reconciling existing discrepancies in estimates for the formation time of the Moon and the crystallization time of its magma ocean.
Category: space – Page 45
Astrophycists from UCLan have determined that flat planets rather than spherical are the result of protoplanetary formation with the disk-instability theory.
To make this record-breaking pass, the nearly 10-foot-long probe has made 22 orbits around the sun, allowing it to swoop ever deeper into the corona. And while doing so, the spacecraft has been continually picking up speed. When you repeatedly swing by such a massive and gravitationally powerful object — the sun is a sphere of hot gas 333,000 times as massive as our planet — you accrue lots of speed. Out in space, there’s nothing to stop this motion.
On this close flyby, the probe reached some 430,000 miles per hour (692,000 kilometers per hour).
“That’s like going from Philadelphia to Washington, D.C. in one second,” marveled Raouafi. “It’s fascinating. It’s the fastest human-made object ever.”
The Parker Solar Probe will swoop just 6.1 million kilometers above the sun’s surface on Christmas Eve. Scientists are thrilled at what we might learn.
By Jonathan O’Callaghan edited by Lee Billings
There are some places in the solar system no human will ever go. The surface of Venus, with its thick atmosphere and crushing pressure, is all but inaccessible. The outer worlds, such as Pluto, are too remote to presently consider for anything but robotic exploration. And the sun, our bright burning ball of hydrogen and helium, is far too hot and tumultuous for astronauts to closely approach. In our place, one intrepid robotic explorer, the Parker Solar Probe, has been performing a series of dramatic swoops toward our star, reaching closer than any spacecraft before to unlock its secrets. Now it is about to perform its final, closest passes, skimming inside the solar atmosphere like never before.
Skoltech researchers have proposed novel mathematical equations that describe the behavior of aggregating particles in fluids. This bears on natural and engineering processes as diverse as rain and snow formation, the emergence of planetary rings, and the flow of fluids and powders in pipes.
Reported in Physical Review Letters, the new equations eliminate the need for juggling two sets of equations that had to be used in conjunction, which led to unacceptable errors for some applications.
Fluid aggregation is involved in many processes. In the atmosphere, water droplets agglomerate into rain, and ice microcrystals into snow. In space, particles orbiting giant planets come together to form rings like those of Saturn.
The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, is also the largest single machine operating in the world today that uses superconductivity. The proton beams inside the LHC are bent and focused around the accelerator ring using superconducting electromagnets. These electromagnets are built from coils, made of niobium–titanium (Nb–Ti) cables, that have to operate at a temperature colder than that of outer space in order to be superconducting. This allows the current to flow without any resistance or loss of energy. The High-Luminosity LHC (HL-LHC), an upgrade of the LHC, will for the first time feature innovative electrical transfer lines known as the “Superconducting Links”
Recently, CERN’s SM18 magnet test facility witnessed the successful integration of the first series of magnesium diboride superconducting cables into a novel, flexible cryostat. Together with high-temperature superconducting (HTS) magnesium diboride (MgB2) cables, they will form a unique superconducting transfer line to power the HL-LHC inner triplet magnets. The triplets are the focusing magnets that focus the beam, right before collisions, to a diameter as narrow as 5 micrometres.
NASA’s Parker Solar Probe is set to achieve its most dangerous feat yet tomorrow, December 24, 2024. After a six-year journey of spiraling closer to the star at the heart of our solar system, the spacecraft is expected to come within 3.8 million miles of the Sun’s surface.
This tiny distance in cosmic terms lets scientists capture a new type of information, revealing secrets about solar winds, extreme heat, and magnetic fields.
Engineers have spent years carefully adjusting Parker’s flight path using multiple Venus gravity assists. These flybys reshape the spacecraft’s orbit and tighten its looping path around the Sun.
Recent discoveries reveal that bursts of slow pulsing radio waves originate from a binary star system consisting of a red dwarf and a white dwarf.
These findings challenge current pulsar theories and indicate a wider variety of stellar systems may emit similar signals.
Radio Wave Mysteries
As the multi-polar world of global politics becomes ever more complex, who better to cast light on its workings than a physicist turned President? Join Armen Sarkissian, former President of Armenia, as he argues for his new theory of quantum politics, in which individuals are necessarily connected across space and our world is dominated by randomness, uncertainty, and possibility.
However, “the idea that Saturn’s rings are young seemed very strange in the context of the solar system’s long evolutionary history,” study lead author Ryuki Hyodo, a planetary scientist at the Institute of Science Tokyo, told Space.com. “A few million years ago is the time of the dinosaurs on Earth. This would mean that the solar system was already well-established and relatively stable.”
In contrast, when Saturn formed about 4.5 billion years ago, or during the era called the Late Heavy Bombardment about 4 billion years ago, “the solar system was far more chaotic,” Hyodo said. “Many large planetary bodies were still migrating and interacting, greatly increasing the chances of a significant event that could have led to the formation of Saturn’s rings.”
To shed light on the age of Saturn’s rings, in the new study, Hyodo and his colleagues developed 3D computer models simulating crashes between micrometeoroids and the rings. These impacts typically occur at speeds of about 67,100 mph (108,000 km/h), they said.