Astronomers are reveling in the James Webb Space Telescope’s discoveries about the formative epoch of cosmic history.
Category: space – Page 45
The Sun has started spooky season with a bang, letting loose on October 1 with a colossal flare and coronal mass ejection headed right for Earth.
The flare clocked in at X7.1 – the second most powerful flare of the current solar cycle, and one of the most powerful solar flares ever measured, sitting within the top 30 flares over the last 30 years.
We’re not in any danger, but the NOAA’s Space Weather Prediction Center has forecast minor to strong geomagnetic storms over the next few days, from 3 to 5 October, as we await the gust of solar particles as the coronal mass ejection blasts through the Solar System.
“The isotope values of these carbonates point toward extreme amounts of evaporation, suggesting that these carbonates likely formed in a climate that could only support transient liquid water,” said Dr. David Burtt.
Was the planet Mars ever habitable and what conditions led to it becoming the uninhabitable world we see today? This is what a recent study published in the Proceedings of the National Academy of Sciences hopes to address as a team of researchers from the United States and Canada investigated how carbonate minerals found within Gale Crater on Mars could help paint a clearer picture of past conditions on the Red Planet and whether it was habitable. This study holds the potential to help scientists better understand the formation and evolution of Mars and whether it once had the necessary conditions to support life as we know it.
Studying carbonate minerals is important due to their ability to tell scientists how a climate formed and evolved over time, with these carbonate minerals containing large amounts of carbon and oxygen isotopes, specifically Carbon-13 and Oxygen-18, which the study notes is the highest amount of these isotopes identified on the Red Planet. Carbon-13 and Oxygen-18 are known as environmental isotopes, which are used to better understand the interactions between a planet’s ocean and atmosphere and how life could exist. While Earth is the only known planet to support life, studying these isotopes on Mars could help scientists better understand if life could have formed on Mars long ago.
BepiColombo’s 2023 flyby of Mercury’s magnetosphere uncovered unexpected insights into plasma and surface composition.
High-speed free-space data transmission could improve connectivity for space missions.
Researchers at ETH Zurich have achieved record-breaking data transmission speeds using plasmonic modulators, promising advancements in space communication and potential global high-speed internet access. With speeds potentially reaching 1.4 Tbit/s, this technology could change how the world connects.
Scientists have achieved data rates as high as 424Gbit/s across a 53-km (33-mile) turbulent free-space optical link using plasmonic modulators—devices that use special light waves called surface plasmon polaritons to control and modify optical signals. This new research establishes the foundation for high-speed optical communication links that transmit data through open air or space.
An exploration of the possibilities of alien survival von neumann probes designed to serve as lifeboats for interstellar travelers.
My Patreon Page:
/ johnmichaelgodier.
My Event Horizon Channel:
The team also studied the direct interaction between charged particles in the solar wind as well as plasma around Mercury and BepiColombo itself. This process is complicated by the fact that when the spacecraft is facing the sun, it is heated and cooled, and heavier charged particles called ions can’t be detected because BepiColombo becomes electrically charged and repels them.
However, when BepiColombo slips into the shadow of Mercury, cool ions in a sea of plasma become detectable. This allowed BepiColombo to see ions of the elements oxygen, sodium and potassium around Mercury. The team thinks these particles originated from the surface of the tiny planet and were launched into space by meteorite strikes or solar wind bombardment.
“It’s like we’re suddenly seeing the surface composition ‘exploded’ in 3D through the planet’s very thin atmosphere, known as its exosphere,” MPPE instrument lead Dominique Delcourt, from the Laboratoire de Physique des Plasmas, said in the statement. “It’s really exciting to start seeing the link between the planet’s surface and the plasma environment.”
On October 7, 2024, the XB-1, Boom Supersonic’s groundbreaking supersonic demonstrator, completed its fifth test flight from the Mojave Air & Space Port, reaching a new top speed of Mach 0.69 (324 KIAS) and a maximum altitude of 17,800 feet.
Flown by Chief Test Pilot Tristan “Geppetto” Brandenburg, the aircraft remained airborne for approximately 50 minutes, setting a new record for the program in terms of speed, altitude, and flight duration.
This flight marked a key milestone as the halfway point of the planned 10 subsonic test flights, all leading toward supersonic speeds later this year. A crucial element of the test was the continued use of the flutter excitation system (FES), which was repaired and reinstalled to gather data at Mach 0.6, helping to expand the flight envelope towards transonic speeds. Additionally, the landing gear was retracted immediately after takeoff, a procedure that will now be standard in upcoming flights.
A rare comet could be visible to the naked eye in the sky for several nights as it orbits around the sun before disappearing for another 80,000 years.
TL;DR
Using a precise parallax method, scientists measured the distance to a star-forming region 66,000 light-years away on the far side of the Milky Way. This discovery, using the Very Long Baseline Array, confirmed the existence of the Scutum-Centaurus Arm and uncovered its undulating shape. The interstellar dust obstructing visible light made this feat more challenging, but tracking molecules like methanol and water helped scientists achieve this. This is part of a larger effort to map the entire Milky Way, with about a quarter still unexplored, offering more insights into the galaxy’s true structure.