Dallas-based fiber internet provider Gigabit Fiber, real estate firm Lincoln Property Co. and investment firm Tradition Holdings are reportedly partnering on the data center and tech space called GigaPop, set for a 131-acre tract of land in Red Oak, about 18 miles south of Dallas. Gigabit Fiber will begin construction of the 800,000-square-foot site in early 2025, starting with a 7,500-square-foot space.
We crafted our first rodent car from a plastic cereal container. After trial and error, my colleagues and I found that rats could learn to drive forward by grasping a small wire that acted like a gas pedal. Before long, they were steering with surprising precision to reach a Froot Loop treat.
As expected, rats housed in enriched environments – complete with toys, space and companions – learned to drive faster than those in standard cages. This finding supported the idea that complex environments enhance neuroplasticity: the brain’s ability to change across the lifespan in response to environmental demands.
After we published our research, the story of driving rats went viralin the media. The project continues in my lab with new, improved rat-operated vehicles, or ROVs, designed by robotics professor John McManus and his students. These upgraded electrical ROVs – featuring rat-proof wiring, indestructible tires and ergonomic driving levers – are akin to a rodent version of Tesla’s Cybertruck.
The vast distances between stars make interstellar travel one of humanity’s most daunting challenges. Even the Voyager spacecrafts, now in interstellar space, would take tens of thousands of years to reach the nearest star, Alpha Centauri. To put this into perspective, Alpha Centauri is 277,000 astronomical units (AU) away—over 7,000 times the distance from Earth to Pluto. At current spacecraft speeds, a journey to our stellar neighbor would take an unimaginable 70,000 years. However, new ideas like the Sunbeam Mission offer a promising path forward, proposing innovative propulsion techniques that could shorten this timeline to mere decades.
The Sunbeam Mission centers around relativistic electron beam propulsion, where high-energy electron beams, accelerated close to the speed of light, push a spacecraft forward. This approach eliminates the need for onboard fuel, reducing the spacecraft’s mass and enabling greater acceleration. A stationary satellite, or statite, positioned near the Sun, would generate these electron beams by converting solar energy into electricity. Using materials and technologies like those developed for NASA’s Parker Solar Probe and European Space Agency’s Solar Orbiter, the statite could endure the Sun’s intense heat while directing the beam over vast distances. This could propel a spacecraft to 10% of the speed of light, allowing it to reach Alpha Centauri in about 40 years.
While the concept is ambitious, its challenges—like generating and maintaining the beam, energy conversion, spacecraft navigation, material durability, and beam focus—are not insurmountable. Current technologies, such as the Large Hadron Collider, high-temperature solar converters, and advanced heat-resistant materials, provide a foundation for overcoming these hurdles. Innovations in adaptive optics and laser communication systems also offer insights into managing beam precision over interstellar distances, demonstrating how existing advancements could be adapted for this revolutionary mission.
The Sunbeam Mission represents an extraordinary opportunity to explore interstellar space within our lifetimes, blending ingenuity and existing technology to bring the dream of reaching another star closer to reality. By addressing these interconnected challenges, humanity could usher in a new era of exploration, paving the way for scientific discoveries that redefine our place in the universe.
Electron transport in bilayer graphene exhibits a pronounced dependence on edge states and a nonlocal transport mechanism, according to a study led by Professor Gil-Ho Lee and Ph.D. candidate Hyeon-Woo Jeong of POSTECH’s Department of Physics, in collaboration with Dr. Kenji Watanabe and Dr. Takashi Taniguchi at Japan’s National Institute for Materials Science (NIMS).
The findings are published in the journal Nano Letters.
Bilayer graphene, comprising two vertically stacked graphene layers, can exploit externally applied electric fields to modulate its electronic band gap—a property essential for electron transport. This distinctive feature has drawn considerable attention for its prospective role in “valleytronics,” an emerging paradigm for next-generation data processing.
The Moon still holds mysteries that leave scientists in awe. A massive, heat-radiating object beneath its surface has sparked new questions about its origins.
This discovery offers a glimpse into the Moon’s hidden history, challenging what we thought we knew about our celestial neighbor.
The Moon, long considered a cold and barren landscape, has just revealed a fascinating new secret. Hidden beneath its far side lies a massive heat-emitting feature that has scientists buzzing with questions. This isn’t just any ordinary discovery—it involves a rare geological phenomenon typically associated with Earth.
How could a body with no plate tectonics or water create something so unexpected? What does this mean for the Moon’s history and its volcanic past? As researchers dig deeper into this puzzling find, they’re uncovering clues that could reshape our understanding of the Moon and perhaps even other rocky worlds in the solar system. Curious?
In a groundbreaking revelation, scientists have identified a substantial heat-emitting granite mass beneath the Moon’s surface, specifically near the Compton and Belkovich craters on its far side. This discovery was made possible through data collected by both Chinese and American lunar orbiters, which utilized microwave frequency observations to detect subsurface temperatures. Dr. Matt Siegler of the Planetary Science Institute explained, “We used an instrument that observes microwave wavelengths, longer than infrared, sent to the Moon on both the Chinese Chang’E 1 and 2 orbiters. We found that one of these suspected volcanoes, known as Compton-Belkovich, was absolutely glowing at microwave wavelengths.”
“We initially expected the carbon-to-oxygen ratio in the planet might be similar to the disk,” said Dr. Chih-Chun “Dino” Hsu. “But, instead, we found the carbon, relative to oxygen, in the planet was much lower than the ratio in the disk.”
What is the official process of planetary formation and evolution and is this process uniform for all planetary bodies throughout the universe? This is what a recent study published in The Astrophysical Journal Letters hopes to address as a team of researchers investigated a young exoplanet still forming within its protoplanetary disk that could offer clues into the secrets behind planetary formation and evolution. Additionally, it holds the potential to provide greater complexity with longstanding planetary formation models, which have traditionally presented simple scenarios for planetary formation and evolution.
For the study, the researchers used the W. M. Keck Observatory to observe PDS 70b, which is a gas giant planet approximately three Jupiter masses and located 369 light-years from Earth. What makes PDS 70b interesting for astronomers is its age, as it’s estimated to be approximately 5 million years old, meaning it is still gathering material from the system’s disk, also known as accretion.
Using Keck, the researchers analyzed the light spectra of PDS 70b’s atmosphere to ascertain its carbon-to-oxygen ration and compared this data to the carbon-oxygen ratio of the protoplanetary disk that PDS 70b resides. In the end, the researchers found that PDS 70b carbon-to-oxygen ratio was lower than the surrounding disk, which challenges previous notions of planetary formation models, and the methods used to build those models.
Students from the Toms River School District in New Jersey will have the chance to connect with NASA astronauts Don Pettit and Butch Wilmore as they answer prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call in collaboration with Science Friday at 10 a.m. EST on Tuesday, Jan. 14, on NASA+ and learn how to watch NASA content on various platforms, including social media.
Science Friday is a nonprofit dedicated to sharing science with the public through storytelling, educational programs, and connections with audiences. Middle school students will use their knowledge from the educational downlink to address environmental problems in their communities.