Toggle light / dark theme

CERN physicist Jamie Boyd enters a tunnel close to the ATLAS detector, an experiment at the largest particle accelerator in the world. From there, he turns into an underground space labeled TI12.

“This is a very special tunnel,” Boyd says, “because this is where the old transfer line used to exist for the Large Electron-Positron Collider, before the Large Hadron Collider.” After the LHC was built, a new transfer line was added, “and this tunnel was then abandoned.”

The tunnel is abandoned no more. Its new resident is an experiment much humbler in size than the neighboring ATLAS detector. Five meters in length, the ForwArd Search ExpeRiment, or FASER, detector sits in a shallow excavated trench in the floor, surrounded by low railings and cables.

My science fiction story “Le Saga Electrik” has been published in All Worlds Wayfarer Literary Magazine! You can read it for free at the link. In this tale, I weave a sensuously baroque drama of love, war, and redemption set in a post-singularity simulation world that runs on a computronium dust cloud orbiting a blue star somewhere in deep space. I draw from diverse literary-poetic influences to create a mythos which crackles and buzzes with phosphorescent intensity!


Le Saga Electrik by Logan Thrasher Collins

In the great domain of Zeitgeist, Ekatarinas decided that the time to replicate herself had come. Ekatarinas was drifting within a virtual environment rising from ancient meshworks of maths coded into Zeitgeist’s neuromorphic hyperware. The scape resembled a vast ocean replete with wandering bubbles of technicolor light and kelpy strands of neon. Hot blues and raspberry hues mingled alongside electric pinks and tangerine fizzies. The avatar of Ekatarinas looked like a punkish angel, complete with fluorescent ink and feathery wings and a lip ring. As she drifted, the trillions of equations that were Ekatarinas came to a decision. Ekatarinas would need to clone herself to fight the entity known as Ogrevasm.

Marmosette, I’m afraid that I possess unfortunate news,” Ekatarinas said to the woman she loved. In milliseconds, Marmosette materialized next to Ekatarinas. Marmosette wore a skin of brilliant blue and had a sleek body with gills and glowing green eyes.

Fast radio bursts (FRBs) are millisecond-long cosmic explosions that each produce the energy equivalent to the sun’s annual output. More than 15 years after the deep-space pulses of electromagnetic radio waves were first discovered, their perplexing nature continues to surprise scientists – and newly published research only deepens the mystery surrounding them.

The hunt for alien worlds is more difficult than it may seem. Without the ability to travel through the cosmos, we’re left to look through telescopes and collect data to determine whether other planets lie in wait. Now, though, astronomers say they may have figured out a way to make the search for these alien worlds much easier, and it relies on a technique that looks for debris fields.

Feng Long, a postdoctoral fellow at Harvard and the Smithsonian’s Center for Astrophysics, says she discovered a possible new technique that can make finding alien worlds much easier. Instead of relying on blindly sifting through data, Long looked for material and fields of debris at the Lagrange points. She published a paper on the technique and her findings in The Astrophysical Journal Letters.

The Lagrange points can be thought of as parking places in space. These points are notable because they act as an intersection of the different gravitational fields between celestial structures. Essentially, these points act as a middle ground between gravitational pulls. As such, the pull of gravity from all objects is equal. So, debris from developing alien worlds may congregate here, Long says.

The NASA/ESA/CSA James Webb Space Telescope is showing off its capabilities closer to home with its first image of Neptune. Not only has Webb captured the clearest view of this peculiar planet’s rings in more than 30 years, but its cameras are also revealing the ice giant in a whole new light.

Most striking about Webb’s new image is the crisp view of the planet’s dynamic rings — some of which haven’t been seen at all, let alone with this clarity, since the Voyager 2 flyby in 1989. In addition to several bright narrow rings, the Webb images clearly show Neptune’s fainter dust bands. Webb’s extremely stable and precise image quality also permits these very faint rings to be detected so close to Neptune.

Neptune has fascinated and perplexed researchers since its discovery in 1846. Located 30 times farther from the Sun than Earth, Neptune orbits in one of the dimmest areas of our Solar System. At that extreme distance, the Sun is so small and faint that high noon on Neptune is similar to a dim twilight on Earth.

Scientists have long studied the work of Subrahmanyan Chandrasekhar, the Indian-born American astrophysicist who won the Nobel Prize in 1983, but few know that his research on stellar and planetary dynamics owes a deep debt of gratitude to an almost forgotten woman: Donna DeEtte Elbert.

From 1948 to 1979, Elbert worked as a “computer” for Chandrasekhar, tirelessly devising and solving mathematical equations by hand. Though she shared authorship with the Nobel laureate on 18 papers and Chandrasekhar enthusiastically acknowledged her seminal contributions, her greatest achievement went unrecognized until a postdoctoral scholar at UCLA connected threads in Chandrasekhar’s work that all led back to Elbert.

Elbert’s achievement? Before anyone else, she predicted the conditions argued to be optimal for a planet or star to generate its own magnetic field, said the scholar, Susanne Horn, who has spent half a decade building on Elbert’s work.