Toggle light / dark theme

Just in time for Halloween, scientists have discovered something spooky and strange occurring at the edge of the solar system: The heliopause — the boundary between the heliosphere (the bubble of solar wind encompassing the solar system) and the interstellar medium (the material between the stars) appears to be rippling and creating oblique angles in an unexpected manner.

The general concept that the heliopause changes shape is not new; over the past decade, researchers have determined that it is not static. They made this discovery using data from Voyager 1 and Voyager 2, the only two spacecraft to exit the heliosphere thus far, as well as NASA’s Interstellar Boundary Explorer (IBEX) satellite, which studies the emissions of energetic neutral atoms (ENAs) that are created when solar winds and the interstellar medium interact.

The mission team continues to complete testing of the spacecraft’s flight software in preparation for the 2023 launch date.

On Friday, October 29, NASA

Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is “To discover and expand knowledge for the benefit of humanity.” Its core values are “safety, integrity, teamwork, excellence, and inclusion.”

The NASA Perseverance rover isn’t only exploring Mars for the scientific discoveries it can make now — it’s also paving the way for future missions which intend to bring samples back from Mars to Earth for the first time. This complicated plan involves multiple vehicles including spacecraft, a lander, and two helicopters, which will work together to collect the samples from the Martian surface, take them to orbit, and return them to Earth. But Perseverance is getting the process started by collecting samples, sealing them up in tubes, and leaving these tubes on the surface for future missions to collect.

Now, NASA and the European Space Agency (ESA) have announced that they have selected the first samples to be deposited on the surface ready for collection. “Never before has a scientifically curated collection of samples from another planet been collected and placed for return to Earth,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters, in a statement. “NASA and ESA have reviewed the proposed site and the Mars samples that will be deployed for this cache as soon as next month. When that first tube is positioned on the surface, it will be a historic moment in space exploration.”

Ten of the 14 samples which Perseverance has collected so far will be deposited in a region of the Jezero Crater called Three Forks. This region was chosen as it is flat and does not have obstacles like large boulders which could cause issues for future collection. The samples chosen for collection include both igneous and sedimentary rocks collected from the rover’s 8-mile journey across Jezero.

NASA scientists are preparing to paint the most detailed picture to date of the atmosphere of Venus when the aptly named DAVINCI — or Deep Atmosphere Venus Investigation of Noble Gases, Chemistry, and Imaging — mission drops a probe to the planet’s surface.

When the 3-foot-wide (0.9 meters) descent sphere of the DAVINCI mission takes its one-way parachute trip to Venus’ surface in the early 2030s, it will be carrying the VASI (Venus Atmospheric Structure Investigation) instrument along with five other instruments. VASI will collect data regarding the temperature, pressure and winds of Venus’ atmosphere as it makes its hellish descent and enters the planet’s crushing lower atmosphere.

“If Martian life ever existed, even if viable lifeforms are not now present on Mars, their macromolecules and viruses would survive much, much longer,” says study lead author Michael Daly, a pathologist at Uniformed Services University of the Health Sciences, in a statement. “That strengthens the probability that, if life ever evolved on Mars, this will be revealed in future missions.”

Mars is an exceedingly hostile place. The planet’s surface is dry and frozen, and cosmic radiation and solar protons are constantly bombarding it. But that may not have always been the case—scientists believe water flowed on Mars between 2 and 2.5 billion years ago, which would’ve made the planet slightly more hospitable.

Researchers were curious to know what kind of life might have evolved—and, potentially, survived into the present—on the Red Planet. To attempt to answer that question, they mimicked the cold, arid conditions of Mars here on Earth with six species of microorganisms.

Mars may not be the geologically dead world we thought it was, as hints of magma have been discovered underground.

The Red Planet is thought to have been volcanically active in the past, but not for many millions of years. Now, by studying a cluster of more than 20 seismic events on Mars using data from NASA’s InSight lander mission, Simon Stähler at ETH Zurich in Switzerland and his colleagues have uncovered a likely magma deposit near Cerberus Fossae, a region of fissures created by fault lines.

InSight landed on Mars in 2018 with the objective of studying seismic waves that travel across the planet’s surface and from deep within its interior. By investigating the speed and frequency of these waves, we can better understand Mars’s geological structure.

Are we alone in the universe? What could a future for humans in space look like? And what would Creon’s advise to Elon Musk be if he wants to make a self-sufficient mass colony there? This Hope Drop features Creon Levit, chief technologist and director of R&D at Planet Labs.

Creon Levit is chief technologist at Planet Labs, where he works to move the world toward existential hope via novel satellite technologies. He also hosts Foresight Institute’s Space Group.

Creon speaks on:

- His experiences working with NASA & Planet Labs.
- Natural systems technologies.
- Regenerative Agriculture.
- His vision for the future.
- And much more!

Creon is chief technologist and director of R&D at Planet Labs, and a Foresight Institute senior fellow. He previously worked at NASA Ames Research Center in Silicon Valley, where he was one of the founders of the NAS (NASA Advanced Supercomputing) division, co-PI on the Virtual Wind Tunnel project, co-founder of the NASA Molecular Nanotechnology Group (the first federally funded research lab devoted to molecular nanotechnology), co-PI on the hyperwall project, investigator on the Columbia accident investigation board, member of the NASA engineering and safety center, investigator on the millimeter-wave thermal rocket project, the Stardust re-entry observation campaign, PI on the LightForce project, special assistant to the center director, and chief scientist for the programs and projects directorate.

Submit your contribution to the storytelling bounty from Creon’s prompt to “Imagine a shift in human nature where we could all have love, community, technology, and adventure, as well as lack of severe hardship or fear.” here: https://680d4kcs6ki.typeform.com/to/jHROTs6z.