Toggle light / dark theme

ABSTRACT. The production mechanism of repeating fast radio bursts (FRBs) is still a mystery, and correlations between burst occurrence times and energies may provide important clues to elucidate it. While time correlation studies of FRBs have been mainly performed using wait time distributions, here we report the results of a correlation function analysis of repeating FRBs in the 2D space of time and energy. We analyse nearly 7,000 bursts reported in the literature for the three most active sources of FRB 20121102A, 20201124A, and 20220912A, and find the following characteristics that are universal in the three sources. A clear power-law signal of the correlation function is seen, extending to the typical burst duration (∼ 10 msec) towards shorter time intervals (Δt). The correlation function indicates that every single burst has about a 10–60 per cent chance of producing an aftershock at a rate decaying by a power law as ∝ (Δt)−p with p = 1.5–2.5, like the Omori–Utsu law of earthquakes. The correlated aftershock rate is stable regardless of source activity changes, and there is no correlation between emitted energy and Δt. We demonstrate that all these properties are quantitatively common to earthquakes, but different from solar flares in many aspects, by applying the same analysis method for the data on these phenomena. These results suggest that repeater FRBs are a phenomenon in which energy stored in rigid neutron star crusts is released by seismic activity. This may provide a new opportunity for future studies to explore the physical properties of the neutron star crust.

Eventually, maybe by the early 2040s, would like to see every large body in solar system, from the Sun out to Pluto to have a probe like the Cassini probe in a permanent orbit around it. So we have 24/7 live feed / study of all of them. And, ASI could run all of it by that point.


Launch and mission info for NASA’s mission exploring Saturn and its system of moons.

Astronomers are one step closer to understanding one of the most enduring solar mysteries, having captured unprecedented data from the sun’s magnetic field.

The groundbreaking data collected from the US National Science Foundation’s (NSF) Daniel K Inouye Solar Telescope (DKIST) in Hawaii—the most powerful solar telescope in the world—has provided the most detailed representations to date of the magnetic field of the so-called ‘quiet’ surface of the sun.

An international team of scientists, including researchers from the University of Sheffield, believe the data has implications for how we model between the layers of the sun. The research has been published in Astrophysical Journal Letters.

WASHINGTON, Oct 16 (Reuters) — When British naturalist Charles Darwin sketched out his theory of evolution in the 1,859 book “On the Origin of Species” — proposing that biological species change over time through the acquisition of traits that favor survival and reproduction — it provoked a revolution in scientific thought.

Now 164 years later, nine scientists and philosophers on Monday proposed a new law of nature that includes the biological evolution described by Darwin as a vibrant example of a much broader phenomenon, one that appears at the level of atoms, minerals, planetary atmospheres, planets, stars and more.

It holds that complex natural systems evolve to states of greater patterning, diversity and complexity.

Humanity is a type 0 civilization. Here’s what types 1, 2, and 3 look like, according to physicist Michio Kaku.

Is anybody out there? Renowned physicist Michio Kaku discusses we could identify and categorize advanced extraterrestrial civilizations.

According to Kaku, while recognizing intelligence in space is challenging, Quantum computers may be able to help sift through data for signals of intelligence, similarly to how we analyze patterns in dolphin communication.

Go Deeper with Big Think:

The digital realm, while offering boundless possibilities, is also a fertile ground for myriad cybersecurity threats. One such peril that has recently come to light is the User-After-Free vulnerability in Google Chrome, specifically identified as CVE-2023–5218. This vulnerability not only poses a significant threat to user data and system integrity but also opens a Pandora’s box of potential cyber-attacks and exploitations.

The User-After-Free vulnerability is a type of cybersecurity flaw that surfaces when a program continues to utilize memory space after it has been freed or deleted. This flaw allows attackers to execute arbitrary code or potentially gain unauthorized access to a system. CVE-2023–5218, identified within Google Chrome, was noted to be potentially exploitable to perform such malicious actions, thereby putting users’ data and privacy at substantial risk.

CVE-2023–5218 was unveiled to the public through various cybersecurity platforms and researchers who detected unusual activities and potential exploitation trails leading back to this particular flaw. This vulnerability was identified to be present in a specific Chrome component, prompting Google to release a flurry of updates and patches to mitigate the associated risks.