Toggle light / dark theme

Lunar soil could support life on the Moon, say scientists

Scientists have developed a technology that may help humans survive on the moon. In a study published in the journal Joule, researchers extracted water from lunar soil and used it to convert carbon dioxide into oxygen and chemicals for fuel—potentially opening new doors for future deep space exploration by mitigating the need to transport essential resources like water and fuel all the way from Earth.

“We never fully imagined the ‘magic’ that the lunar soil possessed,” said Lu Wang of the Chinese University of Hong Kong, Shenzhen.

“The biggest surprise for us was the tangible success of this integrated approach. The one-step integration of lunar H2O extraction and photothermal CO2 catalysis could enhance energy utilization efficiency and decrease the cost and complexity of infrastructure development.”

Study finds cell cytoskeleton mimics critical phenomena seen in earthquakes and metals

Prof. Michael Murrell’s group (lead author Zachary Gao Sun, graduate student in physics) in collaboration with Prof. Garegin Papoian’s group from the University of Maryland at College Park has found critical phenomena (self-organized criticality) that are reminiscent of the earthquakes and avalanches inside the cell cytoskeleton through self-organization of purified protein components.

In a groundbreaking discovery, researchers have found that the cell’s cytoskeleton—the mechanical machinery of the cell—behaves much like Earth’s crust, constantly regulating how it dissipates energy and transmits information. This self-regulating behavior enables cells to carry out complex processes such as migration and division with remarkable precision.

Even more striking, the study draws parallels between the behavior of microscopic cellular structures and massive celestial bodies, suggesting that the principles of criticality—where systems naturally tune themselves to the brink of transformation—may be universal across vastly different scales of nature.

Scientists Create “Impossible” Molecule, Solving Century-Old Chemical Mystery

Scientists have created a once-theoretical molecule under space-like conditions, revealing new insights into the chemistry of the cosmos and the origins of complex compounds. Scientists from the University of Hawaiʻi at Mānoa’s Department of Chemistry have successfully synthesized methanetetrol.

What has Webb taught us about rocky exoplanets so far?

The hunt for potentially habitable rocky planets in our galaxy has been the holy grail of exoplanet studies for decades. While the discovery of more than 5,900 exoplanets in more than 4,400 planetary systems has been a remarkable achievement, only a small fraction (217) have been confirmed as terrestrial—aka rocky or “Earth-like.” Furthermore, obtaining accurate information on a rocky exoplanet’s atmosphere is very difficult, since potentially habitable rocky planets are much smaller and tend to orbit closer to their stars.

Thanks to next-generation instruments like the James Webb Space Telescope (JWST), exoplanet studies are transitioning from discovery to characterization. However, no atmospheres have been clearly identified around rocky planets yet, and the atmospheric data Webb has collected so far is subject to some uncertainty.

A summary of Webb’s findings was featured in a recent study by researchers from the Max Planck Institute for Astronomy (MPIA) and the Johns Hopkins University Applied Physics Laboratory (JHUAPL). Based on their summary, they recommend a “five-scale height challenge” to assist astronomers in atmospheric characterization.

Cosmic baby steps: For the first time, astronomers witness the dawn of a new solar system

For the first time, international researchers have pinpointed the moment when planets began to form around a star beyond the sun. Using the ALMA telescope, in which the European Southern Observatory (ESO) is a partner, and the James Webb Space Telescope, they have observed the creation of the first specks of planet-forming material—hot minerals just beginning to solidify. This finding marks the first time a planetary system has been identified at such an early stage in its formation and opens a window to the past of our own solar system.

“For the first time, we have identified the earliest moment when planet formation is initiated around a star other than our sun,” says Melissa McClure, a professor at Leiden University in the Netherlands and lead author of the new study, published in Nature.

Co-author Merel van ‘t Hoff, a professor at Purdue University, U.S., compares their findings to “a picture of the baby solar system,” saying, “We’re seeing a system that looks like what our solar system looked like when it was just beginning to form.”

Alien world found? Massive ‘Super-Earth’ Kepler-139f discovered beyond our solar system—All you need to know

Kepler-139 f is a Neptune-like exoplanet that orbits a G-type star. The mass of this planet is 36 times that of Earth, which takes 355 days to complete one orbit of its star. It was discovered by NASA scientists in 2025.

Cosmic Death Spiral: Astronomers Catch Planet in Final Orbit Before Destruction

A team of astronomers led by Macquarie University has monitored the orbital decay of an extreme exoplanet to gain new insights into how stars dissipate energy. The exoplanet TOI-2109b, found 870 light-years away in the Hercules constellation of the Milky Way, stands out as one of the most extreme

/* */