Toggle light / dark theme

The appearance of the Interstellar Objects (ISOs) Oumuamua and Comet Borisov in 2017 and 2019, respectively, created a surge of interest.

What were they? Where did they come from? Unfortunately, they didn’t stick around and wouldn’t cooperate with our efforts to study them in detail. Regardless, they showed us something: Milky Way objects are moving around the galaxy.

We don’t know where either ISO came from, but there must be more – far more. How many other objects from our stellar neighbours could be visiting our Solar System?

A comprehensive video explaining quantum gravity.


HD 20,794D, An Earth like planet orbits a sun like star just 20 light years away. Watch and learn more.

GoldBacks from Galactic/Green Greg’s affiliate link:
https://www.defythegrid.com/goldbacks… coupon code GreenGregs for 1% off Outstanding Antioxidant for Your Health: https://shopc60.com/ Use discount code: GreenGregs10 for 10% off Inspire your kids to love science! SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 https://www.pntra.com/t/SENKTExNSUhDR… For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market http://www.pntrac.com/t/TUJGRklGSkJGT… Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com For that off-grid asteroid homestead stock up with Lemans before you blast off: https://www.pntrs.com/t/SENJR0ZOSk9DR

Rigid, lizard-like tails are simple, but mammal-style tails may be lighter and better for space. Researchers studied how tails aid midair maneuverability in animals and robots, focusing on inertial appendages that generate body rotation.

Inspired by lizards and geckos, roboticists have designed rigid, single-plane tails to enhance stability and control in aerial and terrestrial robots. Some robotic tails aid in landing, flight reorientation, and high-speed turns. However, vertebrate (like cats and squirrels) tails are more complex, consisting of multiple vertebrae that allow for diverse movements.

By analyzing mammalian tails, researchers found that increasing bone segments within the same length enhances rotational ability. To evaluate tail effectiveness, they developed simulations optimizing tail trajectories for precise body rotations. Unlike previous models that assumed rigid structures, their approach considers deformability and realistic control constraints.

For centuries, the I-Ching, or Book of Changes, has fascinated scholars, mystics, and seekers alike. It is often considered a mere divination tool, a mystical means of interpreting the world through the casting of hexagrams.

But what if the I-Ching is something more? What if it operates as a structured probability space, exhibiting patterns and behaviors reminiscent of quantum mechanics?

Our latest research suggests that the I-Ching might not be a random oracle but instead a system governed by deep mathematical structures.

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about the discovery of the most massive superstructure in the nearby universe — Quipu.
https://arxiv.org/abs/2501.19236
Bohringer et al., Astronomy and Astrophysics, 2025
https://en.wikipedia.org/wiki/Sachs%E2%80%93Wolfe_effect.
Similar videos:





https://youtu.be/wp8zHG1g7bc.
#quipu #superstructure #cosmos.

0:00 Largest superstructure in the universe — Quipu.
0:45 Laniakea discovery of 2014
1:25 Shapley concentration.
2:35 Cosmological issues: Hubble Tension and S8 tension.
3:45 New study mapping galaxies and the discovery.
5:15 Additional findings and implications.
6:25 What is this though?
7:20 Confirming predictions and how this was found.
8:40 What’s next?

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

How fast can solar systems orbit our Milky Way Galaxy? This is what a recent study published in The Astronomical Journal hopes to address as an international team of researchers confirmed the existence of a star and exoplanet companion orbiting within the Milky Way’s galactic bulge that could be the fastest orbiting exoplanet system ever found. This study has the potential to help scientists better understand the formation and evolution of exoplanetary systems throughout the Milky Way and potentially beyond.

For the study, the researchers analyzed data from a 2011 study published in The Astrophysical Journal comprised of some of the same team that used the microlensing method to identify the existence of two objects orbiting near the Milky Way’s galactic bulge, which is a region containing a high-density number of stars. At the time, those researchers hypothesized the objects were either a gas giant with an exomoon or a fast-moving exoplanetary system. The researchers on this recent study deduced that the objects consisted of a star approximately 20 percent the size of our Sun and an exoplanet approximately 30 times the size of Earth.

But the surprise was finding out the pair’s speed by comparing their 2011 location to its 2021 location, which the team estimated is traveling at approximately 600 kilometers per second (372 miles per second), or approximately 2.1 kilometers per hour (1.3 million miles per hour). At this speed, the objects will leave the Milky Way millions of years from now since it surpasses our galaxy’s escape velocity. For context, our solar system is orbiting our Milky Way at approximately 828,000 kilometers per hour (515,000 miles per hour).

Space and cooling limitations restrict the number of usable qubits. However, researchers believe connecting two qubits in separate dilution refrigerators using an optical fiber is now possible.

“The infrastructure is available, and we can now build the first simple quantum computing networks,” says Arnold.

While the ISTA physicists have made significant progress in developing superconducting quantum hardware, more work is needed. Their prototype has limited performance, especially in terms of optical power. Nevertheless, it proves that a fully optical readout of superconducting qubits is possible, and further advancements will depend on the industry.