It’s been more than three years since the National Aeronautics and Space Administration made space-grown lettuce an item on the menu for astronauts aboard the International Space Station. Alongside their space diet staples of flour tortillas and powdered coffee, astronauts can munch on a salad, grown from control chambers aboard the ISS that account for the ideal temperature, amount of water and light that plants need to mature.
But there is a problem. The International Space Station has a lot of pathogenic bacteria and fungi. Many of these disease-causing microbes at the ISS are very aggressive and can easily colonize the tissue of lettuce and other plants. Once people eat lettuce that’s been overrun by E. coli or Salmonella, they can get sick.
With billions of dollars poured into space exploration each year by NASA and private companies like SpaceX, some researchers are concerned that a foodborne illness outbreak aboard the International Space Station could derail a mission.
In the XXI century, the world of orbital launchers has started a revolution, a fundamental change of paradigm: the replacement of expendable rockets with reusable ones is well underway. This presentation summarizes the situation at the beginning of year 2024.
A short bio. Alberto Cavallo is an Electrical Engineer, graduated at the Politecnico di Torino in 1985. He began his activity with designing electric systems in Fiat Engineering, the engineering and construction company of the FIAT Group, moving soon to control and automation systems in the same company. He was involved in all business areas of the company, which included revamping and new projects of car factories for the FIAT Group as well as large infrastructures, power and cogeneration plants for external clients. Among the projects of that time were the new FIAT factories in Melfi and Pratola Serra, the high speed railways Torino-Milano and Bologna-Firenze, the district heating system of Torino Sud, combined cycle power plants for several hundred megawatts in Italy and in Brazil. Since Fiat Engineering was transferred from the FIAT Group to a new EPC group and then merged with a large EPC company in Milan, he has been involved in large oil and gas and petrochemical projects all over the world. Besides his professional activity, he has always taken part in several cultural activities. He was a member of the Associations of Alumni of the Liceo Classico Vittorio Alfieri of Turin, active in promoting humanistic culture as well as its connection to the technical and scientific area. He manages his own website www.eurinome.it (in Italian only) about philosophy, science and politics/geopolitics. Due to this he got in contact with Adriano Autino and his TDF, then becoming one of the founding members of Space Renaissance International. Besides several papers in his professional area he has written several articles for his own site, for TDF and SRI, coauthoring the book “Three Theses for the Space Renaissance” with Adriano Autino and Patrick Q. Collins. He is currently member of the Board of SRI.
NASA has set its sights on sending human crews back to the moon and establishing a permanent base on the lunar surface. The agency wants to return to the moon, build a lunar outpost, and eventually send humans to Mars. But these missions come with risks and challenges.
As humans venture deeper into space and explore other worlds, they face daunting challenges.
How will they survive the harsh and unpredictable environments they encounter? What if meteorites, radiation, or other hazards damage their habitats? Delegating routine tasks to machines could save them time and resources, but how will they make sure these machines are reliable? These are just some pressing questions that must be answered to travel safely and sustainably beyond Earth’s orbit.
Starlab Space has chosen SpaceX to launch the private space station, Starlab, into low-Earth orbit (LEO) in just one flight.
Starlab Space is a transatlantic collaboration between Voyager Space and Airbus.
The announcement reveals that SpaceX’s Starship vehicle would undertake a single mission to transport the entire Starlab before the International Space Station’s (ISS) retirement, scheduled for 2030. However, the company’s release did not specify the launch date of Starlab.
The building is jam-packed with towering stainless-steel cylinders — Super Heavy vehicles, the first stage of SpaceX’s Starship megarocket — which rise nearly to the roof.
“Super Heavy boosters for the next three flights, with a fourth ready to stack, in the Starbase Megabay,” SpaceX wrote in the post.
A Delaware judge has voided Tesla CEO Elon Musk’s gargantuan $55 billion pay package following a lawsuit by shareholders claiming it was far too much wealth to award a single individual.
In a ruling this week, Delaware judge Kathaleen McCormick called the billionaire’s cushy compensation plan “an unfathomable sum,” arguing it was unfair to shareholders.
Uncontested, the decision could leave a massive gap in the net worth of the once richest man in the world, which could have a ripple effect on his other ventures, including SpaceX and his online echo chamber X-formerly-Twitter.
Barry-1 has 2 Quantum Drives: QD1 (Blue Arrow, internal) & QD1-TC (Green Arrow). Both are designed to produce thrust in the same direction (Red Arrow). QD1-TC is expected to produce about 2x the thrust of QD-1. CEO Richard Mansell said it has two drives a 0.25mN and a 0.65mN drive.
The DARPA funding (2018−2022 Quantized Inertia investigation) $1.3 million was for the researcher Mike McCulloch. But none of the DARPA funding has been or is yet for IVO is all privately funded. No VC or DARPA funds. The $17 Million DARPA Otter which appears intended for this type of work, but nothing has been allocated to my knowledge and definitely no DARPA funds have gone to IVO.
If they are fully successful, they will see both at once and see 3x thrust of QD-1. This would prove scaling via multiple devices. The devices are lightweight. If they have additive thrust, it will barely matter that the thrust is tiny. It means that arrays of thousands or millions of devices can be created. The devices might be one millinewton or less but then a million devices achieves constant one thousand newton thrust. The operation for a decade of multiple drives mean this would scale to full up interstellar drives. The best lab result is one watt for 52 millinewtons. The devices flown to orbit have far less thrust and each has different thrust so that it is clear whether zero, one or two devices are working.