Toggle light / dark theme

The stellar engine – a gigantic contraption built with the purpose of transporting our Solar System somewhere else, if we ever need to move to a different cosmic neighbourhood. Now, new research has put forward another idea for what such a radical stellar engine might look like. Via this beautiful video from Kurzgesagt, Caplan Thruster, would use the Sun’s own energy to propel it across the galaxy and beyond.


As far as hypothetical space megastructures go, the stellar engine is one of our favourites – a gigantic contraption built with the purpose of transporting our Solar System somewhere else, if we ever need to move to a different cosmic neighbourhood.

Now, new research has put forward another idea for what such a radical stellar engine might look like.

Via this beautiful video from Kurzgesagt, you can learn all about the so-called Caplan Thruster, which would use the Sun’s own energy to propel it across the galaxy and beyond. It’s named after the scientist who came up with the design, astrophysicist Matthew Caplan from Illinois State University.

Researchers from the Dutch Delft University of Technology and NASA/ESA recommend that we build a Mars base with the use of bacteria. In short, the idea is to send a spacecraft containing bacteria to Mars several years ahead of sending human settlers. Those bacteria can then start mining for iron that will later be used by human pioneers when building settlements.

Benjamin Lehner, a Ph.D. student from the Delft University of Technology, mapped out a complete plan to adequately prepare for human settlers. He proposes to send an initial capsule containing a bioreactor, an uncomplicated rover that is capable of digging, and a 3D printer. The reactor will be filled with a type of bacteria called ‘Shewanella oneidensis’ that can convert the non-usable naturally occurring iron in the Martian soil to usable magnetite that is easy to extract. This magnetite can then be converted to components like iron plates with the 3D printer.

A pair of researchers, one with the Max Planck Institute for Astronomy, the other with the Jet Propulsion Laboratory at CIT, has found a way to estimate how long it will take already launched space vehicles to arrive at other star systems. The pair, Coryn Bailer-Jones and Davide Farnocchia have written a paper describing their findings and have uploaded it to the arXiv preprint server.

Back in the 1970s, NASA sent four unmanned probes out into the solar system—Pioneer 10 and 11, and Voyager 1 and 2—which, after completion of their missions, kept going—all four are on their way out of the or have already departed. But what will become of them? Will they make their way to other star systems, and if so, how long might it take them? This is what Bailer-Jones and Davide Farnocchia wondered. To find some possible answers, they used the Gaia space telescope. It was launched by the European Space Agency back in 2013 and has been stationed at a point just outside of Earth’s orbit around the sun. It has been collecting information on a billion stars, including their paths through space. The latest dataset was released just last year on 7.2 million stars.

With data describing the paths of the four and data describing the paths of a host of stars in hand, the researchers were able to work out when the paths of the four spacecraft might approach very far away .

SpaceX is closing out the year with an achievement that should help it keep on track to fly astronauts on board one of its spacecraft next year. The Elon Musk-led space company finished its tenth consecutive successful parachute system test yesterday, an important safety system milestone that should be a good indication that the latest design is just about ready for use with astronauts on board.

The parachute system is what’s used to slow the descent of SpaceX’s Crew Dragon commercial astronaut spacecraft on its return trip to Earth, once it enters the atmosphere. The current design is the third major iteration of SpaceX’s parachute for Crew Dragon, featuring upgraded materials and improved stitching for the best possible reliability and durability during flight.

Yesterday the team completed the 10th successful multi-chute test in a row of Crew Dragon’s upgraded Mark 3 parachute design – one step closer to safely launching and landing @NASA astronauts pic.twitter.com/nfFjnKygB4