Toggle light / dark theme

CHINA’S NEW THORIUM-BASED NUCLEAR REACTOR is well situated for being adopted for Space applications.

China is slowly but steadily positioning itself to leap ahead of the US Space program. It is doing this without pomp and fanfare, and without the idea of a “space race,” simply based upon what it requires for its future.

1) Recent noteworthy progress on molten salt thorium reactors could be a key component of future Chinese space-worthiness. Originally designed by the USA’s Oak Ridge National Laboratory in the 1960’s, they were planned to be used for nuclear powered strategic bomber planes, before the nuclear submarine concept became adopted as more feasible. They were chosen because they can be miniaturized to the size of an aircraft. By the same token, they could conceivably be used in advanced atmospheric or space propulsion.

2) Recently, China announced successful tests on a new type of aircraft that takes in air from the surrounding atmosphere, ionizes it with electricity, and expels it as exhaust. The only thing needed would be a strong enough on-board electrical supply to supply the huge amount of power required. Only a nuclear power plant could supply that power unless it were to be beamed from ground stations. Such a plane would require no fuel for its entire lifetime. It could also function in any atmosphere, not only Earth’s atmosphere, since it is not based on burning fuel chemically, which requires oxygen. Versions of such air-plasma-breathing thrust could be used as part of the boosting phase of a rocket launch system.

3) A few days ago, China tested part of its fully reusable space plane, which is a vastly superior system to SpaceX’s “Starship” rocket. While Starship uses old-fashioned ballistic rocket technology, the Chinese spaceplane, according to reports that have come out, involves something similar to the Sanger space plane design. An early version of the Space Shuttle design also had this configuration. Instead of the Space Shuttle’s dangerous solid rocket boosters on the side, and its external fuel tank, which is dumped once the fuel is used up, such systems have a second “booster aircraft” which glides to a runway after boosting the upper stage orbiter into its atmospheric launch position. So, there are two vehicles which land on a runway, with only the orbiter going into space. In addition to this, the Chinese are adding “combined cycle” technologies, where more than one type of propulsion is being used on the aircraft. So, perhaps turbojets, and scramjets, and rocket engines will be used as one example of such a configuration.

The CASC announced its plans to build a reusable space transport system last year, which would involve building a series of spacecraft that take off and land like regular planes, but can reach any corner of the earth within an hour by flying at least five times the speed of sound at a suborbital altitude.


Friday’s test of an experimental vessel is a step towards the development of a hypersonic vehicle that could reach any corner of the Earth within an hour.

China is playing the long game. It plans to become the leading power in space sometime in the 2040s, through a mixture of its own perseverance and America’s decline.


The eagle and the rabbitHalf a century on, the race back to the Moon looks markedly different from the first.

The Juno Waves instrument “listened” to the radio emissions from Jupiter’s immense magnetic field to find their precise locations.

By listening to the rain of electrons flowing onto Jupiter from its intensely volcanic moon Io, researchers using NASA’s Juno spacecraft have found what triggers the powerful radio emissions within the monster planet’s gigantic magnetic field. The new result sheds light on the behavior of the enormous magnetic fields generated by gas-giant planets like Jupiter.

Jupiter has the largest, most powerful magnetic field of all the planets in our solar system, with a strength at its source about 20000 times stronger than Earth’s. It is buffeted by the , a stream of electrically charged particles and magnetic fields constantly blowing from the Sun. Depending on how hard the solar wind blows, Jupiter’s magnetic field can extend outward as much as two million miles (3.2 million kilometers) toward the Sun and stretch more than 600 million miles (over 965 million kilometers) away from the Sun, as far as Saturn’s orbit.

Universe Today.


Space may be pretty, but it’s dangerous. Astronauts face a much higher dose of ionizing radiation than us Earth-bound folks, and a new report says that NASA’s current guidelines and risk assessment methods are in serious need of an update.

On the surface of the Earth, protected by our extensive magnetic field and layers of thick atmosphere, we experience about 2–3 milliSieverts (mSv) of radiation exposure every year. Even that background level is enough to trigger the occasional cancer growth.

But astronauts, especially those hoping to go on upcoming long-term missions to the Moon and Mars, face a much greater risk due to the high-energy, ionizing radiation constantly soaking every cubic centimeter of space. To mitigate that risk, NASA currently implements a system based on “risk of exposure-induced death” (REID). The space agency estimates the exposure for each astronaut based on their sex, and if the REID exceeds 3%, their spacefaring careers are over.