Menu

Blog

Archive for the ‘solar power’ category: Page 89

Jun 14, 2020

Icarus, Much? This Aircraft Aims to Fly to Space Using Only Energy From the Sun

Posted by in categories: solar power, space, sustainability

The SolarStratos will gain its power from 240 square feet of solar panels on its wings.

Jun 10, 2020

Renewable fuel from carbon dioxide with the aid of graphene and solar energy

Posted by in categories: chemistry, solar power, sustainability

Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide, a greenhouse gas, to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique to selectively produce methane, carbon monoxide or formic acid from carbon dioxide and water.

The study has been published in ACS Nano (“Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion”).

Plants convert carbon dioxide and water to oxygen and high-energy sugars, which they use as “fuel” to grow. They obtain their energy from sunlight. Jianwu Sun and his colleagues at Linköping University are attempting to imitate this reaction, known as photosynthesis, used by plants to capture carbon dioxide from air and convert it to chemical fuels, such as methane, ethanol and methanol. The method is currently at a research stage, and the long-term objective of the scientists is to convert solar energy to fuel efficiently.

Jun 10, 2020

Spherical Solar Cells Soak Up Scattered Sunlight

Posted by in categories: engineering, solar power, sustainability

Flat solar panels still face big limitations when it comes to making the most of the available sunlight each day. A new spherical solar cell design aims to boost solar power harvesting potential from nearly every angle without requiring expensive moving parts to keep tracking the sun’s apparent movement across the sky.

The spherical solar cell prototype designed by Saudi researchers is a tiny blue sphere that a person can easily hold in one hand like a ping pong ball. Indoor experiments with a solar simulator lamp have already shown that it can achieve between 15 percent and 100 percent more power output compared with a flat solar cell with the same total surface area, depending on the background materials reflecting sunlight into the solar cells. The research group hopes its nature-inspired design can fare similarly well in future field tests in many different locations around the world.

“The placement and shape of the housefly’s eyes increase their angular field of view so they can see roughly 270 degrees around them in the horizontal field,” says Nazek El-Atab, a postdoctoral researcher in microsystems engineering at the King Abdullah University of Science and Technology (KAUST). “Similarly, the spherical architecture increases the ‘angular field of view’ of the solar cell, which means it can harvest sunlight from more directions.”

Jun 9, 2020

1.35 Cents/kWh: Record Abu Dhabi Solar Bid Is A Sober Reminder To Upbeat Fossil Fuel Pundits

Posted by in categories: solar power, sustainability

Clean Tech News & Views: Solar Energy News. Wind Energy News. EV News. & More.

Jun 9, 2020

New Generation of Lightweight, Flexible Solar Cells and Display Screens Using Transparent Graphene Electrodes

Posted by in categories: solar power, sustainability

New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens.

A new way of making large sheets of high-quality, atomically thin graphene could lead to ultra-lightweight, flexible solar cells, and to new classes of light-emitting devices and other thin-film electronics.

The new manufacturing process, which was developed at MIT and should be relatively easy to scale up for industrial production, involves an intermediate “buffer” layer of material that is key to the technique’s success. The buffer allows the ultrathin graphene sheet, less than a nanometer (billionth of a meter) thick, to be easily lifted off from its substrate, allowing for rapid roll-to-roll manufacturing.

Jun 8, 2020

Transparent graphene electrodes might lead to new generation of solar cells

Posted by in categories: solar power, sustainability

A new way of making large sheets of high-quality, atomically thin graphene could lead to ultra-lightweight, flexible solar cells, and to new classes of light-emitting devices and other thin-film electronics.

Jun 8, 2020

Scientists Create Prototype That Generates Electricity From Shadows

Posted by in categories: solar power, sustainability

It sounds like something from a sci-fi movie, but the newly revealed Shadow-Effect Energy Generator (SEG) is a real prototype device. The fascinating concept could help us to transform the way renewable energy is generated indoors.

The SEG uses the contrast between darkness and light to produce electricity. It’s made up of a series of thin strips of gold film on a silicon wafer, placed on top of a flexible plastic base.

Whereas shadows are usually a problem for renewable solar energy production, here they’re actually harnessed to keep on generating power. The technology — which is cheaper to produce than a typical solar cell, according to its developers — produces small amounts of power and could be used in mobile gadgets, for example.

Jun 5, 2020

Discovery unlocks ‘hot’ electrons for more efficient energy use

Posted by in categories: solar power, sustainability

Highly energetic, “hot” electrons have the potential to help solar panels more efficiently harvest light energy.

But scientists haven’t been able to measure the energies of those electrons, limiting their use. Researchers at Purdue University and the University of Michigan built a way to analyze those energies.

“There have been many theoretical models of hot electrons but no direct experiments or measurements of what they look like,” said Vladimir “Vlad” Shalaev (shal-AYV), Purdue University’s Bob and Anne Burnett Distinguished Professor of Electrical and Computer Engineering, who led the Purdue team in this collaborative work.

Jun 3, 2020

Double-sided solar panels that follow the sun prove most cost effective

Posted by in categories: solar power, sustainability

Solar power systems with double-sided (bifacial) solar panels—which collect sunlight from two sides instead of one—and single-axis tracking technology that tilts the panels so they can follow the sun are the most cost effective to date, researchers report June 3rd in the journal Joule. They determined that this combination of technologies produces almost 35% more energy, on average, than immobile single-panel photovoltaic systems, while reducing the cost of electricity by an average of 16%.

“The results are stable, even when accounting for changes in the and in the costs from the and the other components of the photovoltaic system, over a fairly wide range,” says first author Carlos Rodríguez-Gallegos, a research fellow at the Solar Energy Research Institute of Singapore, sponsored by the National University of Singapore. “This means that investing in bifacial and tracking systems should be a safe bet for the foreseeable future.”

Research efforts tend to focus on further boosting output from by improving solar cell efficiency, but the energy yield per panel can also be increased in other ways. Double-sided solar panels, for example, produce more energy per unit area than their standard counterparts and can function in similar locations, including rooftops. This style of solar panel, as well as tracking technology that allows each panel to capture more light by tilting in line with the sun throughout the day, could significantly improve the energy yield of solar cells even without further advancements in the capabilities of the cells themselves. However, the combined contributions of these recent technologies have not been fully explored.

Jun 3, 2020

Precision spray coating could enable solar cells with better performance and stability

Posted by in categories: solar power, sustainability

Although perovskites are a promising alternative to the silicon used to make most of today’s solar cells, new manufacturing processes are needed to make them practical for commercial production. To help fill this gap, researchers have developed a new precision spray-coating method that enables more complex perovskite solar cell designs and could be scaled up for mass production.

Perovskites are promising for next-generation because they absorb light and convert it to energy with better efficiency and potentially lower production costs than silicon. Perovskites can even be sprayed onto glass to create energy-producing windows.

“Our work demonstrates a process to deposit by layer with controllable thicknesses and rates of deposition for each layer,” said research team leader Pongsakorn Kanjanaboos from the School of Materials Science and Innovation, Faculty of Science, Mahidol University in Thailand. “This new method enables stacked designs for solar with better performance and stability.”

Page 89 of 143First8687888990919293Last