Toggle light / dark theme

This could revolutionize the way solar panels are produced on Earth and in space. The solar panel manufacturing process also releases oxygen as a by-product, which could be used by future astronauts to create breathable environments in space.


The Luxembourg-based startup Maana Electric will soon be testing its TerraBox, a fully automated factory the size of several shipping containers that takes sand and produces solar panels. The company aims to send these small warehouse container-like boxes, capable of building solar panels using only electricity and sand as inputs, to the deserts of the Earth, in order to contribute to the fight against climate change.

If all goes according to the plans, the technology could reach the Moon, Mars, and beyond as well to help future space colonies meet their energy needs. The TerraBox fits within shipping containers, allowing the mini-factories to be transported to deserts across the globe and produce clean, renewable energy.

In addition to contributing to the fight against climate change, this potentially revolutionary product could also help reduce the dependence of renewable energy operators on China, which manufactures the majority of the world’s photovoltaic solar panels.

Distillation of water using solar energy is considered one of the most popular desalination methods today.

Power engineers at Ural Federal University (UrFU), together with colleagues from Iraq, have developed a new desalination technology, which is claimed to be much more effective than others, by incorporating a rotating cylinder. The method proposed by the UrFU power engineers will significantly reduce the cost of desalination and will increase production volumes by four times.

The experimental new solar distiller incorporates a rectangular basin, inside of which is a horizontally oriented black steel cylinder. The basin is filled with undrinkable water, and the cylinder is slowly rotated by a solar-powered DC motor.

The Australian company LAVO has developed a hydrogen storage system for domestic solar systems. It is the world’s first integrated hybrid hydrogen battery that combines with rooftop solar to deliver sustainable, reliable, and renewable green energy to your home and business. Developed in partnership with UNSW, Sydney, Australia, and Design + Industry, the Hydrogen Battery System from LAVO consists of an electrolysis system, hydrogen storage array, and fuel cell power system rolled into one attractive cabinet. When the electricity from the solar system on the roof is not needed, it is stored in the form of hydrogen. This then serves as fuel for the fuel cell when the solar system is not supplying electricity.


However, LAVO’s hydrogen hybrid battery delivers a continuous output of 5 kW and stores over 40kWh of electricity – enough to power the average Australian home for two days on a single charge. The system is designed to easily integrate with existing solar panels, creating a significant opportunity for LAVO to have an immediate and notable impact. There are Wi-Fi connectivity and a phone app for monitoring and control, and businesses with higher power needs can run several in parallel to form an intelligent virtual power plant.

Hydrogen is often incorrectly seen as an unsafe fuel, usually due to the 1937 Hindenburg disaster. However, the company says any leaks will disperse quickly, though, making it inherently no more dangerous than other conventional fuels such as gasoline or natural gas. This innovation has a lifespan of approximately 30 years, which is three times longer than that of lithium batteries, thanks to its reliance on hydrogen gas rather than the chemicals in a conventional battery.

According to the manufacturer, LAVO’s hydrogen storage should be ready for installation by the middle of this year. It costs AU$34750 (US$26900) for the first 2500 units and will require a fully refundable deposit to secure your LAVO pre-order. In the coming year, the price is expected to drop to AU$29450 (US$22800).

What i would suggest is landing Atlas robots in waves on the Moon, the first wave builds a solar panel farm for power, the second repairs the first wave, the third joins the first two to begin building large scale runways, the fourth joins the first three to begin building permanent structures.

The Moon is close enough for teleoperations, and in the 2030s, when we actually do Mars, the AI could repeat the whole thing there.


Before they explore Mars, the robots explore Martian-like caves on Earth first.

The photovoltaic effect of ferroelectric crystals can be increased by a factor of 1000 if three different materials are arranged periodically in a lattice. This has been revealed in a study by researchers at Martin Luther University Halle-Wittenberg (MLU). They achieved this by creating crystalline layers of barium titanate, strontium titanate and calcium titanate which they alternately placed on top of one another. Their findings, which could significantly increase the efficiency of solar cells, were published in the journal Science Advances.

Most solar cells are currently silicon based; however, their efficiency is limited. This has prompted researchers to examine new materials, such as ferroelectrics like barium , a mixed oxide made of barium and titanium. “Ferroelectric means that the material has spatially separated positive and negative charges,” explains physicist Dr Akash Bhatnagar from MLU’s Centre for Innovation Competence SiLi-nano. “The charge separation leads to an asymmetric structure that enables electricity to be generated from light.” Unlike silicon, ferroelectric crystals do not require a so-called pn junction to create the photovoltaic effect, in other words, no positively and negatively doped layers. This makes it much easier to produce the solar panels.

However, pure barium titanate does not absorb much sunlight and consequently generates a comparatively low photocurrent. The latest research has shown that combining extremely thin layers of different materials significantly increases the solar energy yield. “The important thing here is that a ferroelectric material is alternated with a paraelectric material. Although the latter does not have separated charges, it can become ferroelectric under certain conditions, for example at low temperatures or when its is slightly modified,” explains Bhatnagar.

Google’s parent Alphabet unveiled a new “moonshot” project to develop software for robotics which could be used in a wide range of industries.

The new unit, dubbed Intrinsic, will “become an independent Alphabet company,” and seek industrial partners to advance their work helping to make everything from to cars, the new unit’s chief, Wendy Tan-White, said in a blog post.

“Intrinsic is working to unlock the creative and economic potential of industrial robotics for millions more businesses, entrepreneurs, and developers,” she said.

For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source—splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

CHINA’S NEW THORIUM-BASED NUCLEAR REACTOR is well situated for being adopted for Space applications.

China is slowly but steadily positioning itself to leap ahead of the US Space program. It is doing this without pomp and fanfare, and without the idea of a “space race,” simply based upon what it requires for its future.

1) Recent noteworthy progress on molten salt thorium reactors could be a key component of future Chinese space-worthiness. Originally designed by the USA’s Oak Ridge National Laboratory in the 1960’s, they were planned to be used for nuclear powered strategic bomber planes, before the nuclear submarine concept became adopted as more feasible. They were chosen because they can be miniaturized to the size of an aircraft. By the same token, they could conceivably be used in advanced atmospheric or space propulsion.

2) Recently, China announced successful tests on a new type of aircraft that takes in air from the surrounding atmosphere, ionizes it with electricity, and expels it as exhaust. The only thing needed would be a strong enough on-board electrical supply to supply the huge amount of power required. Only a nuclear power plant could supply that power unless it were to be beamed from ground stations. Such a plane would require no fuel for its entire lifetime. It could also function in any atmosphere, not only Earth’s atmosphere, since it is not based on burning fuel chemically, which requires oxygen. Versions of such air-plasma-breathing thrust could be used as part of the boosting phase of a rocket launch system.

3) A few days ago, China tested part of its fully reusable space plane, which is a vastly superior system to SpaceX’s “Starship” rocket. While Starship uses old-fashioned ballistic rocket technology, the Chinese spaceplane, according to reports that have come out, involves something similar to the Sanger space plane design. An early version of the Space Shuttle design also had this configuration. Instead of the Space Shuttle’s dangerous solid rocket boosters on the side, and its external fuel tank, which is dumped once the fuel is used up, such systems have a second “booster aircraft” which glides to a runway after boosting the upper stage orbiter into its atmospheric launch position. So, there are two vehicles which land on a runway, with only the orbiter going into space. In addition to this, the Chinese are adding “combined cycle” technologies, where more than one type of propulsion is being used on the aircraft. So, perhaps turbojets, and scramjets, and rocket engines will be used as one example of such a configuration.

The new molten salt reactors, part of a program developed under the leadership of former Chinese President Zemin’s son, and with collaboration from the US’s Oakridge National Laboratory, is now close to implementation stage. Such reactors could be integrated into a space plane, allowing “single-stage-to-orbit” concepts to become within reach. Such systems would not need a booster phase, but would use a combination of air-plasma-breathing and rocket engines to get to orbit with only a single vehicle, while landing like the Space Shuttle did or perhaps landing with powered flight instead of gliding without fuel as did the Shuttle.

All of this makes China’s plan for “nuclear-powered space shuttles” in the 2040’s very possible. If fusion power is obtained before then, this will all proceed even faster, and all the technical and engineering skills will be immediately brought to bear.