Toggle light / dark theme

The researchers also optimized their electrolyzer to produce the highest levels of acetate ever produced in an electrolyzer to date. What’s more, they found that crop plants, including cowpea, tomato, rice, green pea, and tobacco, all have the potential to be grown in the dark using the carbon from acetate. There’s even a possibility that acetate could improve crop yields, though more research is required.

The researchers believe that by reducing the reliance on direct sunlight, artificial photosynthesis could provide an important alternative for food growth in the coming years, as the world adapts to the worst effects of climate change — including droughts, floods, and reduced land availability. “Using artificial photosynthesis approaches to produce food could be a paradigm shift for how we feed people. By increasing the efficiency of food production, less land is needed, lessening the impact agriculture has on the environment. And for agriculture in non-traditional environments, like outer space, the increased energy efficiency could help feed more crew members with less inputs,” Jinkerson explained.

Now, researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have demonstrated a tin-lead perovskite cell that overcomes problems with stability and improves efficiency.

To improve cell stability, NREL researchers used a hole-transporting material made of phenethylammonium iodide and guanidinium thiocyanate. Researchers noted that the formation of quasi-two-dimensional (quasi-2D) structures from additives based on mixed bulky organic cations phenethylammonium and guanidinium provides critical defect control to substantially improve the structural and optoelectronic properties of lead-perovskite thin films with a narrow-bandgap of 1.25 eV.

The new tandem solar cell design with two layers of perovskites measured a 25.5% efficiency. It retained 80% of its maximum efficiency after 1,500 hours of continuous operation or more than 62 days.

Jackson, Michigan-based Sesame Solar is today unveiling what it claims is the world’s first fully renewable mobile nanogrid – that’s a small microgrid – that runs on solar and green hydrogen.

The nanogrid’s solar array is electronically unfolded, and it’s ready to start generating power within 15 minutes. The company claims it can be set up by a single person.

Depending on the model, as the nanogrid is modular and customizable, Sesame Solar’s turnkey nanogrids can produce between 3 and 20 kW of solar power, with total battery storage of 15 to 150 kWh. It’s designed to meet peak and average use and provide uninterrupted sustainable power. The company says the nanogrids are shipped within 45 days after the order is placed and claims they’re good for 20 years. The average cost is around $150,000.

Everything is about to be illuminated.

A team of researchers from Imperial College London and Newcastle University has just observed what happens after light strikes solar cells.

The researchers employed a cutting-edge technique to analyze organic photovoltaic (OPV) materials that harvest the sunlight to generate electricity and peered into the first fractions of a second after light meets the cells, a press release states.

Ricoh, European startups race to bring flexible power source to market this year.


TOKYO — A thin, flexible alternative to silicon-based solar cells is set to be produced in greater volumes, opening up more uses for renewable energy such as powering indoor smart devices.

Organic solar cells are made by printing photovoltaic material on plastic sheets and other bendable substrates. They are expected to cost half as much to make as silicon-based solar cells and are 100 times lighter, manufacturers say.

Unlike silicon cells, the conversion efficiency of organic solar cells does not drop when used indoors. Companies are zeroing in on that advantage to develop power sources for smart speakers, remote controls and sensors.

Holes help make sponges and English muffins useful (and, in the case of the latter, delicious). Without holes, they wouldn’t be flexible enough to bend into small crevices, or to sop up the perfect amount of jam and butter.

In a new study, University of Chicago scientists find that holes can also improve technology, including . Published in Nature Materials, the paper describes an entirely new way to make a solar cell: by etching holes in the top layer to make it porous. The innovation could form the basis for a less-invasive pacemaker, or similar medical devices. It could be paired with a small light source to reduce the size of the bulky batteries that are currently implanted along with today’s pacemakers.

“We hope this opens many possibilities for further improvements in this field,” said Aleksander Prominski, the first author on the paper.

Greenhouse gas emissions need to be significantly reduced to avoid potentially catastrophic effects of climate change, with access to clean and affordable energy needed to eliminate our reliance on fossil fuels. Many researchers and companies are working to address this issue and replace fossil fuels through the use of hydrogen, a storable fuel.

When used in a fuel cell, hydrogen does not emit any greenhouse gasses at the point of use and can help decarbonize sectors such as shipping and transportation, where it can be used as a fuel, as well as in manufacturing industries. However, most hydrogen produced today is almost entirely supplied from natural gas and coal, producing greenhouse gases. And therefore, green hydrogen production is urgently needed.

New research led by the University of Strathclyde suggests that solar energy can be accessed and converted into hydrogen – a clean and renewable fuel.

Dutch company Lightyear has unveiled what it claims is the world’s first production-ready solar car. The Lightyear 0 is a family sedan with 5 sq m (53.8 sq ft) of solar panels built in, capable of generating up to 70 km (44 miles) of charge-free driving a day.

Having scaled its workforce up to 500 people and hooked up deals with more than 100 suppliers, Lightyear is deadly serious about this venture and ready to start manufacturing. Its first car is this four-door fastback electric sedan, with enough onboard battery to deliver a very solid 560 km (348 miles) of freeway driving at 110 km/h (68 mph), even without the sun shining.

That’s a pretty impressive number; in WLTP testing, the Lightyear 0 delivers 625 km (388 miles) of range, or nearly 4 percent more than Tesla’s Model 3 Long Range AWD. Lightyear says it’s developed the most efficient electric drivetrain ever, and that these range figures come from a battery pack holding just 60 kWh. For comparison, the Model 3 Long Range AWD is reported to run an 82-kWh pack.

Imagine we could do what green plants can do: photosynthesis. Then we could satisfy our enormous energy needs with deep-green hydrogen and climate-neutral biodiesel. Scientists have been working on this for decades. Chemist Chengyu Liu will receive his doctorate on 8 June for yet another step that brings artificial photosynthesis closer. He expects it to be commonplace in fifty years.

In fact, we can already achieve photosynthesis as can. Solar converts CO2 and water into oxygen and chemical compounds that we can use as fuel. Hydrogen for example, but also carbon compounds like those found in petrol. But the costs are higher than the value of the fuel it yields. If that changes, and we can scale up this artificial photosynthesis gigantically, then all our energy problems will be solved. Then CO2 emissions from will become negative.