Toggle light / dark theme

Researchers realize perovskite-based phase heterojunction solar cells

Over the past few decades, engineers and material scientists have created increasingly advanced and efficient solar technologies. Some of these technologies are based on photovoltaics with a so-called heterojunction structure, which entails the integration of two materials with distinct optoelectronic properties.

Researchers at Technische Universität Dresden have recently realized a different type of , referred to as phase heterojunction (PHJ) solar cells. These cells, introduced in a paper published in Nature Energy, were fabricated using two polymorphs (i.e., structural forms) of the same material, the perovskite CsPbI3, instead of two entirely different semiconductors.

“The realization of a PHJ requires the ability to fabricate two different phases of the same perovskite composition on top of each other,” Yana Vaynzof, lead author of the paper, told TechXplore. “While the fabrication of CsPbI3 perovskite by solution-processing is well established in the literature, we needed to develop a method to deposit a perovskite without dissolving the underlying layer, so we decided to use thermal evaporation for this purpose.”

Cooling solar farms can make them more powerful

You heard that right, it’s time to cool down the solar farms a bit.

It’s a common belief that a solar panel produces more energy on receiving more sunlight but that’s not always true. In fact, a report from the World Economic Forum state that photovoltaic cells on a solar panel (that trap sunlight and convert it into electricity) may start producing less energy if they get overheated.

A new study conducted by a team of researchers from the University of Utah (UU), National Renewable Energy Laboratory (NREL), and Portland State University (PSU), sheds more light on this rarely discussed aspect of solar panels. It mentions that the efficiency of a solar plant goes down by 0.5 percent.


Jinli Guo/iStock.

Many solar panel manufacturers suggest that the ideal temperature for commercially used solar panels ranges between 15°C and 35°C, and the PV cells achieve the highest energy efficiency at 25°C. So, if a solar plant experiences a temperature around 50°C, it may suffer energy losses of up to 12 percent.

Glass-like shells of diatoms help turn light into energy in dim conditions

A new study has revealed how the glass-like shells of diatoms help these microscopic organisms perform photosynthesis in dim conditions. A better understanding of how these phytoplankton harvest and interact with light could lead to improved solar cells, sensing devices and optical components.

“The and toolkit we developed could pave the way toward mass-manufacturable, sustainable optical devices and more efficient harvesting tools that are based on shells,” said research team member Santiago Bernal from McGill University in Canada. “This could be used for biomimetic devices for sensing, new telecommunications technologies or affordable ways to make clean energy.”

Diatoms are found in most bodies of water. Their shells are covered in holes that respond to light differently depending on their size, spacing and configuration. In the journal Optical Materials Express, the researchers, led by McGill University’s David V. Plant and Mark Andrews, report the first optical study of an entire diatom shell. They analyzed how different sections of the shell, or frustule, respond to sunlight and how this response is connected to photosynthesis.

The ESA aims to make 24/7 space-based solar energy harvesting a reality

The Solaris program will study space-based solar power amid rising energy concerns.

The European Space Agency (ESA) is set to approve a three-year study to determine whether sending huge solar farms into space could effectively meet the world’s energy demands, a report from the BBC reveals.

So, if all goes to plan, the technology could one day harvest massive amounts of energy from space — enough to power millions of homes.


ESA / A. Treuer.

A space-based solar power plant would be launched into a geostationary orbit, meaning it would orbit in a fixed location over the Earth that would be hit by the Sun 24/7.

A Portuguese company’s innovative floating solar panels stalk the Sun’s movements

Currently floating on a lake in the Netherlands, the solar island comprises 180 movable solar panels that provide an increase in energy production by up to 40 percent.

A Portuguese company’s sustainable solution is following the Sun, almost like a stalker, in a bid to get the most out of its energy.


SOLARISFLOAT

SolarisFloat has developed an innovative floating solar solution that is unlike the many being installed in water bodies around the world. With single-or dual-axis tracking, the floating island is powered by electric engines that consume less than 0.5 percent of the total energy produced. As the BBC explained, the installation, named PROTEVS, is the first to merge floating solar panels with Sun-tracking technology.

New technique accurately measures how 2D materials expand when heated

Two-dimensional materials, which consist of just a single layer of atoms, can be packed together more densely than conventional materials, so they could be used to make transistors, solar cells, LEDs, and other devices that run faster and perform better.

One issue holding back these next-generation electronics is the heat they generate when in use. Conventional electronics typically reach about 80 degrees Celsius, but the in 2D devices are packed so densely in such a small area that the devices can become twice as hot. This can damage the device.

This problem is compounded by the fact that scientists don’t have a good understanding of how 2D materials expand when temperatures rise. Because the materials are so thin and optically transparent, their thermal expansion coefficient (TEC)—the tendency for the material to expand when temperatures increase—is nearly impossible to measure using standard approaches.

ESA SOLARIS: Wireless Power Beamed Down From Space

Solar power could be gathered far away in space and transmitted wirelessly down to Earth to wherever it is needed. The European Space Agency (ESA) plans to investigate key technologies needed to make Space-Based Solar Power a working reality through its SOLARIS initiative. Recently in Germany, one of these technologies, wireless power transmission, was demonstrated to an audience of decision-makers from business and government.

The demonstration took place at Airbus’ X-Works Innovation Factory in Munich. Microwave beaming was used to transmit green energy between two points representing ‘Space’ and ‘Earth’ over a distance of 36 meters.

The received power was used to light up a model city and produce green hydrogen by splitting water. It even served to produce the world’s first wirelessly cooled 0% alcohol beer in a fridge before being served to the watching audience.

/* */