Toggle light / dark theme

The three solar micro-grids, with combined capacity of 35 kilowatts, were installed in the communities of Harkapur in Okhaldhunga district, and Kaduwa and Chyasmitar in Khotang District, as per a statement issued today. They will provide a 24-hour reliable electricity supply to around 540 people in 83 households and 25 local businesses.

“Nearly a quarter of Nepal’s population has no access to electricity and rely heavily instead on kerosene in particular. Since most of them live in remote areas, there is little possibility of connecting to the national power grid in the near future,” said Jiwan Acharya, senior energy specialist at the Asian Development Bank (ADB). “The solar micro-grids that we are piloting here provide a clean, cost-effective, local solution involving private sector that will change the lives of these communities and serve as a model for other far-flung villages.”

Electricity costs for households are forecast at $4 to $6 per month. Currently households relying on kerosene for lighting alone, can pay up to $10 a month. And by using solar power rather than fossil fuels, the project will avoid 41 tonnes of carbon dioxide emissions every year.

Read more

The Roll-Array is easily towable by a standard 4×4 vehicle such as a Land Rover. When connected to the back of the car, the flexible solar panels are pulled out of a spool and create ground cover in a matter of minutes. On their website, Renovagen claims the panels will be able generate up to 100kWp – 10 times more power than other transportable solar panels on the market today.

solar power, solar energy, alternative energy, solar panels on a roll, rollable solar panels, Roll-array, rollarray, Renovagen, John Hingley, flexible solar panels, pv array, photovoltaic, photovoltaic panels, rolling solar panels

Not only is this new technology installed quickly, but the fuel cost savings during transportation is noteworthy. The tightly wound solar spools can be carried by the 4×4 vehicle attached to a small air pallet trailer in tow, which eliminates the need for large diesel generators.

Read more

Two big problems have been vexing environmental scientists for decades: How to store solar energy for later use, and what to do with CO2 that’s been captured and sequestered from coal plants? Scientists from General Electric (GE) could solve both those problems at once by using CO2 as a giant “battery” to hold excess energy. The idea is to use solar power from mirrors to heat salt with a concentrated mirror array like the one at the Ivanpah solar plant in California. Meanwhile, CO2 stored underground from, say, a coal plant is cooled to a solid dry ice state using excess grid power.

When extra electricity is needed at peak times, especially after the sun goes down, the heated salt can be tapped to warm up the solid CO2 to a “supercritical” state between a gas and solid. It’s then funneled into purpose built turbines (from GE, naturally) which can rapidly generate power. The final “sunrotor” design (a prototype is shown below) would be able to generate enough energy to power 100,000 homes, according to GE.

Read more

Q-Dots windows to power homes and other buildings.


Researchers at the Los Alamos National Lab may have found a way to take quantum dots and put them in your ordinary windows to turn them into solar collectors.

Photovoltaic cells may be cheaper and more efficient than ever, but you still need to find a place to put them.

Looking to solve these space constraints, Los Alamos partnered with the University of Milano in Italy to see if they could turn windows into electric generators.

As nanocrystals roughly one-billionth of a meter across, — that is as small as 10 atoms wide — quantum dots can absorb light at one wavelength, convert it and re-emit it at another wavelength.

So the dots would absorb sunlight and convert it to a wavelength best suited for the photovoltaic cells, then be guided to the solar cells installed at its edges to electricity.

The University of Milan is responsible for the new industrial method that embeds the dots in a transparent material.

Read more

I always caution folks to never say “never” especially around hacking and worst case scenarios relating to security. Granted there is a balance around not going too overboard. However, when it comes to being risk adverse and determining how much risk your company can absorb must be a core piece of your assessment. And, an attack like the one by ISIS in this article can not be allowed.

https://lnkd.in/b-_mdNW


LONDON: ISIS terrorists hacked the website of a UK-based solar firm as revenge for the killing of one of their British Muslim members, a media report said on Sunday.

Self-styled Caliphate Cyber Army (CCA) members recently carried out the hack on the website of Solar UK, an East Sussex company in south-east England with only 11 staff, The Sunday Times reported.

The attack was reportedly to avenge the death of Junaid Hussain, an ISIS figure from Birmingham, and it saw customers being diverted to a web page featuring the terror group’s logo accompanied by a string of threats.

Read more

Demonstrating a strategy that could form the basis for a new class of electronic devices with uniquely tunable properties, researchers at Kyushu University were able to widely vary the emission color and efficiency of organic light-emitting diodes based on exciplexes simply by changing the distance between key molecules in the devices by a few nanometers.

This new way to control electrical properties by slightly changing the device thickness instead of the materials could lead to new kinds of organic electronic devices with switching behavior or that reacts to external factors.

Organic such as OLEDs and organic solar cells use thin films of for the electrically active materials, making flexible and low-cost devices possible.

Read more

If the human race is to survive in the long-run, we will probably have to colonise other planets. Whether we make the Earth uninhabitable ourselves or it simply reaches the natural end of its ability to support life, one day we will have to look for a new home.

Hollywood films such as The Martian and Interstellar give us a glimpse of what may be in store for us. Mars is certainly the most habitable destination in our solar system, but there are thousands of exoplanets orbiting other stars that could be a replacement for our Earth. So what technology will we need to make this possible?

We effectively already have one space colony, the International Space Station (ISS). But it is only 350km away from Earth and relies on a continuous resupply of resources for its crew of six. Much of the technology developed for the ISS, such as radiation shielding, water and air recycling, solar power collection, is certainly transferable to future space settlements. However, a permanent space colony on the surface of another planet or moon adds a new set of challenges.

Read more

You phone does all kinds of things when it’s just lying there: checking your Facebook feed, pulling down Google Now updates, receiving emails and text messages. One thing it’s not doing: giving your battery a break.

Kyocera is working to change that. How? By sandwiching a solar panel to a smartphone display. It’s something they’ve been working on in conjunction with Sunpartner Technologies. They actually showed off their progress last year at Mobile World Congress, and they returned this year to give the crowd a glimpse at their updated prototype.

It’s an Android device with a five-inch screen, and like some of Kyocera’s other phones it’s waterproof and quite rugged. Curious how the solar layer affects the phone’s display? Reports from people that have spent time with the device say that you’d be hard pressed to notice the difference. That’s because the .55mm panel that Kyocera has integrated into their latest prototype’s display is 85% transmissive.

Read more