Toggle light / dark theme

BIDCell: Biologically-informed self-supervised learning for segmentation of subcellular spatial transcriptomics data

Thirdly, more recent approaches have begun to leverage deep learning (DL) methods. DL models such as U-Net12 have provided solutions for many image analysis challenges. However, they require ground truth to be generated for training. DL-based methods for SST cell segmentation include GeneSegNet13 and SCS14, though supervision is still required in the form of initial cell labels or based on hard-coded rules. Further limitations of existing methods encountered during our benchmarking, such as lengthy code runtimes, are included in Supplementary Table 1. The self-supervised learning (SSL) paradigm can provide a solution to overcome the requirement of annotations. While SSL-based methods have shown promise for other imaging modalities15,16, direct application to SST images remains challenging. SST data are considerably different from other cellular imaging modalities and natural images (e.g., regular RGB images), as they typically contain hundreds of channels, and there is a lack of clear visual cues that indicate cell boundaries. This creates new challenges such as (i) accurately delineating cohesive masks for cells in densely-packed regions, (ii) handling high sparsity within gene channels, and (iii) addressing the lack of contrast for cell instances.

While these morphological and DL-based approaches have shown promise, they have not fully exploited the high-dimensional expression information contained within SST data. It has become increasingly clear that relying solely on imaging information may not be sufficient to accurately segment cells. There is growing interest in leveraging large, well-annotated scRNA-seq datasets17, as exemplified by JSTA18, which proposed a joint cell segmentation and cell type annotation strategy. While much of the literature has emphasised the importance of accounting for biological information such as transcriptional composition, cell type, and cell morphology, the impact of incorporating such information into segmentation approaches remains to be fully understood.

Here, we present a biologically-informed deep learning-based cell segmentation (BIDCell) framework (Fig. 1 a), that addresses the challenges of cell body segmentation in SST images through key innovations in the framework and learning strategies. We introduce (a) biologically-informed loss functions with multiple synergistic components; and (b) explicitly incorporate prior knowledge from single-cell sequencing data to enable the estimation of different cell shapes. The combination of our losses and use of existing scRNA-seq data in supplement to subcellular imaging data improves performance, and BIDCell is generalisable across different SST platforms. Along with the development of our segmentation method, we created a comprehensive evaluation framework for cell segmentation, CellSPA, that assesses five complementary categories of criteria for identifying the optimal segmentation strategies. This framework aims to promote the adoption of new segmentation methods for novel biotechnological data.

Stable Code 3B: Coding on the Edge

Stability # AI announces their first Large Language Model release of 2024: Stable Code 3B. This new LLM is available for non-commercial & commercial use.


Stable Code, an upgrade from Stable Code Alpha 3B, specializes in code completion and outperforms predecessors in efficiency and multi-language support. It is compatible with standard laptops, including non-GPU models, and features capabilities like FIM and expanded context size. Trained in multiple.

In Leaked Audio, Microsoft Cherry-Picked Examples to Make Its AI Seem Functional

Microsoft “cherry-picked” examples of its generative AI’s output after it would frequently “hallucinate” incorrect responses, Business Insider reports.

The scoop comes from leaked audio of an internal presentation on an early version of Microsoft’s Security Copilot, a ChatGPT-like AI tool designed to help cybersecurity professionals.

According to BI, the audio contains a Microsoft researcher discussing the results of “threat hunter” tests in which the AI analyzed a Windows security log for possible malicious activity.

Bridging the Quantum “Reality Gap” — Unveiling the Invisible With AI

A study led by the University of Oxford has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the ‘reality gap’: the difference between predicted and observed behavior from quantum devices. The results have been published in Physical Review X.

Quantum computing could supercharge a wealth of applications, from climate modeling and financial forecasting, to drug discovery and artificial intelligence. But this will require effective ways to scale and combine individual quantum devices (also called qubits). A major barrier against this is inherent variability: where even apparently identical units exhibit different behaviors.

The cause of variability in quantum devices.

Scientists Train AI to Be Evil, Find They Can’t Reverse It

How hard would it be to train an AI model to be secretly evil? As it turns out, according to AI researchers, not very — and attempting to reroute a bad apple AI’s more sinister proclivities might backfire in the long run.

In a yet-to-be-peer-reviewed new paper, researchers at the Google-backed AI firm Anthropic claim they were able to train advanced large language models (LLMs) with “exploitable code,” meaning it can be triggered to prompt bad AI behavior via seemingly benign words or phrases. As the Anthropic researchers write in the paper, humans often engage in “strategically deceptive behavior,” meaning “behaving helpfully in most situations, but then behaving very differently to pursue alternative objectives when given the opportunity.” If an AI system were trained to do the same, the scientists wondered, could they “detect it and remove it using current state-of-the-art safety training techniques?”

Unfortunately, as it stands, the answer to that latter question appears to be a resounding “no.” The Anthropic scientists found that once a model is trained with exploitable code, it’s exceedingly difficult — if not impossible — to train a machine out of its duplicitous tendencies. And what’s worse, according to the paper, attempts to reign in and reconfigure a deceptive model may well reinforce its bad behavior, as a model might just learn how to better hide its transgressions.

/* */