Toggle light / dark theme

Year 2021 face_with_colon_three


Creatine plays a pivotal role in cellular bioenergetics, acting as a temporal and spatial energy buffer in cells with high and fluctuating energy requirements (1). Jeopardizing delicate creatine homeostasis can be detrimental to many energy-demanding tissues, including the brain. For instance, cerebral creatine hypometabolism accompanies various neurological conditions, including a number of developmental disorders (2, 3), neurodegenerative and cerebrovascular diseases (4, 5), and brain cancer (6). A reduced creatine availability in the brain has been thus recognized as an apposite therapeutic target, and supplying exogenous creatine to compensate for a disease-driven shortfall emerged as a first possible approach. However, early success in animal models of neurological diseases was not corroborated in human trials, with the use of creatine supplementation proved largely disappointing in clinical studies with a number of symptomatic neurological disorders [for a detailed review, see (7)]. A meager delivery of creatine to the brain could be partly due to a low activity/density of creatine transporter (CT1 or SLC6A8), a transmembrane sodium-and chloride-dependent protein that mediates creatine uptake into the target cells (8). For that reason, the upregulation of CT1 function has been identified as an innovative course of action to facilitate creatine uptake, with several exotic agents and routes were cataloged so far, including glucocorticoid-regulated kinases, mammalian target of rapamycin, ammonia, and Klotho protein (9).

Besides other vehicles, Klotho protein (Clotho; HFTC3) is put forward as a possible stimulator of CT1 function that can uplift creatine allocation to the target tissues. This membrane-bound pleiotropic enzyme (also exists in a circulating form) participates in many metabolic pathways, including calcium-phosphate metabolism, nutrient sensing, and remyelination (10). Klotho is highly expressed in neuronal cells of the cerebral cortex, cerebellum, and spinal cord (11). The role of Klotho in high-phosphate energy metabolism modulation was revealed a few years ago when Amilaji et al. (12) found that the co-expression of Klotho protein increases a creatine-induced current in CT1-expressing cells. The authors reported that the current through CT1 was a function of the extracellular creatine levels, with the maximal creatine-induced current was higher in cells expressing CT1 together with Klotho than in cells expressing CT1 alone (29.5 vs. 20.2 nA).

Laboratory “copilots” and automated labs are AI’s latest contribution to speeding up the development of new drugs, chemicals and materials. Why it matters: Scientific discovery itself must speed up if the world is to address its challenges — from climate change to personalized treatments for cancer — fast enough to make a difference. In scientific research, “manual effort is not scalable,” writes Microsoft Health Futures’ Hoifung Poon in the…

YSM researchers are using deeplearning AI models to improve detection of patients at risk for multiple hospitalizations due to asthma and COPD.


Asthma and chronic obstructive pulmonary disease (COPD) are two of the most common lung diseases worldwide, and exacerbation of these conditions can negatively impact health and increase health care costs. A new study shows that deep learning, a type of artificial intelligence (AI) that uses large amounts of data to process information, can improve detection of patients with these diseases who are at increased risk for multiple hospitalizations.

The study was published Dec. 13, 2023, in the journal Respiratory Research.

In the study, researchers identified electronic health record (EHR) characteristics of severe asthma and COPD exacerbations. They then evaluated four machine learning models and one deep learning model in predicting hospital readmissions using EHR data. The researchers found that multilayer perceptron, a deep learning method, had the best performance.

German researchers are developing an algorithm to help decode ancient cuneiform tablets — including those containing the oldest known work of world literature.

Ancient poem: The Epic of Gilgamesh is a Babylonian poem first written in cuneiform characters on clay tablets around 4,000 years ago. It tells the story of Gilgamesh, the king of the city of Uruk, and his quest for immortality.

Over the centuries, the poem was copied onto countless other tablets in both the original Sumerian language as well as Akkadian.

Our smart devices take voice commands from us, check our heartbeats, track our sleep, translate text, send us reminders, capture photos and movies, and let us talk to family and friends continents away.

Now imagine turbocharging those capabilities. Holding in-depth, natural language exchanges on academic or personal queries; running our vital signs through a global database to check on imminent health issues; packing massive databases to provide comprehensive real-time translation among two or more parties speaking different languages; and conversing with GPS software providing details on the best burgers, movies, hotels or people-watching spots trending along your route.

Tapping into the seductive power of large language models and natural language processing, we’ve witnessed tremendous progress in communications between us and technology that we increasingly rely on in our daily lives.