Toggle light / dark theme

The performance of artificial intelligence (AI) tools, including large computational models for natural language processing (NLP) and computer vision algorithms, has been rapidly improving over the past decades. One reason for this is that datasets to train these algorithms have exponentially grown, collecting hundreds of thousands of images and texts often collected from the internet.

Training data for robot control and planning algorithms, on the other hand, remains far less abundant, in part because acquiring it is not as straightforward. Some computer scientists have thus been trying to create larger datasets and platforms that could be used to train computational models for a wide range of robotics applications.

In a recent paper, pre-published on the server arXiv and set to be presented at the Robotics: Science and Systems 2024 conference, researchers at the University of Texas at Austin and NVIDIA Research introduced one of these platforms, called RoboCasa.

Advances in artificial intelligence are coming to your freezer, in the form of robot-assembled prepared meals.

Chef Robotics, a San Francisco–based startup, has launched a system of AI-powered robotic arms that can be quickly programmed with a recipe to dole out accurate portions of everything from tikka masala to pesto tortellini. After experiments with leading brands, including Amy’s Kitchen, the company says its robots have proved their worth and are being rolled out at scale to more production facilities. They are also being offered to new customers in the US and Canada.

CEO Elon Musk teased it in April for the first time, and it was set to bring unprecedented momentum to the company’s years of development of Full Self-Driving and fully autonomous driving technologies.

However, Tesla is not quite ready to roll out the Robotaxi prototypes.

First reported by Bloomberg, Tesla is said to need more time to build the first units of the Robotaxi. Because it is built upon the automaker’s next-generation platform, which is to blame for the company’s lack of growth in 2024, more development is needed.

The country’s current progress appears to be on par with Elon Musk’s Neuralink.


China has created a committee to steer the nation’s development of brain-computer interfaces (BCIs), with the hope of becoming the global leader in brain chip technology.

The committee will reportedly develop nationwide standards for development to compete with Western technology outfits, such as Elon Musk’s Neuralink.

Brain-computer interfaces

The term “brain-computer interface” was coined in the early 1970s. A BCI refers to any device that translates the brain’s signals into language that can be interpreted by a computer.

Advances in artificial intelligence are making it increasingly difficult to distinguish between uniquely human behaviors and those that can be replicated by machines. Should artificial general intelligence (AGI) arrive in full force—artificial intelligence that surpasses human intelligence—the boundary between human and computer capabilities will diminish entirely.

In recent months, a significant swath of journalistic bandwidth has been devoted to this potentially dystopian topic. If AGI machines develop the ability to consciously experience life, the moral and legal considerations we’ll need to give them will rapidly become unwieldy. They will have feelings to consider, thoughts to share, intrinsic desires, and perhaps fundamental rights as newly minted beings. On the other hand, if AI does not develop consciousness—and instead simply the capacity to out-think us in every conceivable situation—we might find ourselves subservient to a vastly superior yet sociopathic entity.

Neither potential future feels all that cozy, and both require an answer to exceptionally mind-bending questions: What exactly is consciousness? And will it remain a biological trait, or could it ultimately be shared by the AGI devices we’ve created?

1/ OpenAI and Los Alamos National Laboratory (LANL) are partnering to explore how multimodal AI models can be safely used by laboratory scientists to advance life science research.

2/ As part of an evaluation study, novice and advanced laboratory scientists will solve standard experimental tasks…


OpenAI and Los Alamos National Laboratory (LANL) are collaborating to study the safe use of AI models by scientists in laboratory settings.

Ad.

The partnership aims to explore how advanced multimodal AI models like GPT-4, with their image and speech capabilities, can be safely used in labs to advance “bioscientific research.”