Toggle light / dark theme

Apple is exploring various “personal robotics” projects in an effort to create its “next big thing,” according to Bloomberg’s Mark Gurman.


Amazon’s Astro robot

One of these projects is described as a “mobile robot” that would “follow users around their homes,” while another is said to be an “advanced table-top home device that uses robotics to move a display around”:

Harvard researchers say they have developed a programmable metafluid they are calling an ‘intelligent liquid’ that contains tunable springiness, adjustable optical properties, variable viscosity, and even the seemingly magical ability to shift between a Newtonian and non-Newtonian fluid.

The team’s exact formula is still a secret as they explore potential commercial applications. However, the researchers believe their intelligent liquid could be used in anything from programmable robots to intelligent shock absorbers or even optical devices that can shift between transparent and opaque states.

“We are just scratching the surface of what is possible with this new class of fluid,” said Adel Djellouli, a Research Associate in Materials Science and Mechanical Engineering at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS) and the first author of the paper. “With this one platform, you could do so many different things in so many different fields.”

In a new Nature study, Columbia Engineering researchers have built a photonic chip that is able to produce high-quality, ultra-low-noise microwave signals using only a single laser. The compact device—a chip so small, it could fit on a sharp pencil point—results in the lowest microwave noise ever observed in an integrated photonics platform.

The achievement provides a promising pathway towards small-footprint ultra-low-noise microwave generation for applications such as high-speed communication, atomic clocks, and autonomous vehicles.

The challenge Electronic devices for global navigation, wireless communications, radar, and precision timing need stable microwave sources to serve as clocks and information carriers. A key aspect to increasing the performance of these devices is reducing the noise, or random fluctuations in phase, that is present on the microwave.

LVLM-Intrepret.

An interpretability tool for large vision-language models.

In the rapidly evolving landscape of artificial intelligence, multi-modal large language models are emerging as a significant area of interest.


Join the discussion on this paper page.