Toggle light / dark theme

Cyber defense innovation could significantly boost 5G network security

A framework for building tighter security into 5G wireless communications has been created by a Ph.D. student working with the University of Portsmouth’s Artificial Intelligence and Data Center.

With its greater network capacity and ability to rapidly transmit huge amounts of information from one device to another, 5G is a critical component of intelligent systems and services—including those for health care and financial services.

However, the dynamic nature of 5G networks, the high volumes of data shared and the ever changing types of information transmitted means that these networks are extremely vulnerable to cyber threats and increasing risks of attack.

‘Milestone’: Google AI reveals new method to make cancer treatable

In a major leap for cancer research, Google DeepMind and Yale University have unveiled an artificial intelligence system capable of uncovering new biological insights directly validated in living cells.

Announced on October 15, the new foundation model, C2S-Scale 27B, represents one of the largest and most sophisticated AI systems ever developed to study cellular behavior.

Built on Google’s Gemma family of models, it has generated a groundbreaking hypothesis about how cancer cells interact with the immune system—one that could reshape how future therapies are designed.

Smartphone imaging system shows promise for early oral cancer detection in dental clinics

Oral cancer remains a serious health concern, often diagnosed too late for effective treatment, even though the mouth is easily accessible for routine examination. Dentists and dental hygienists are frequently the first to spot suspicious lesions, but many lack the specialized training to distinguish between benign and potentially malignant conditions.

To address this gap, researchers led by Rebecca Richards-Kortum at Rice University have developed and tested a low-cost, smartphone-based imaging system called mDOC (mobile Detection of Oral Cancer). Their recent study, published in Biophotonics Discovery, evaluates how well this system can help dental professionals decide when to refer patients to specialists.

The mDOC device combines and autofluorescence imaging with machine learning to assess oral lesions. Autofluorescence imaging uses to detect changes in tissue fluorescence, which can signal abnormal growth. However, this method alone can be misleading, as benign conditions like inflammation also reduce fluorescence.

From stiff to soft in a snap: Magnetic jamming opens new frontiers for microrobotics

Could tiny magnetic objects, that rapidly clump together and instantly fall apart again, one day perform delicate procedures inside the human body? A new study from researchers at the Max Planck Institute for Intelligent Systems in Stuttgart and at ETH Zurich introduces a wireless method to stiffen and relax small structures using magnetic fields, without wires, pumps, or physical contact.

In music, “jamming” refers to the spontaneous gathering of musicians who often improvise without aiming for a predefined outcome. In physics, jamming describes the transition of a material from a fluid-like to a solid-like state—like a traffic jam, where the flow of cars suddenly stops. This transformation can also be triggered on demand, offering a powerful and versatile way to control stiffness for .

In most robotic applications, jamming is achieved using vacuum systems that suck air out of flexible enclosures filled with materials such as particles, fibers, or grains. But these systems require pumps, valves, and tubing—making them difficult to miniaturize.

Learning the language of lasso peptides to improve peptide engineering

In the hunt for new therapeutics for cancer and infectious diseases, lasso peptides prove to be a catch. Their knot-like structures afford these molecules high stability and diverse biological activities, making them a promising avenue for new therapeutics. To better unleash their clinical potential, a team from the Carl R. Woese Institute for Genomic Biology has developed LassoESM, a new large language model for predicting lasso peptide properties.

The collaborative study was recently published in Nature Communications.

Lasso peptides are made by bacteria. To produce these peptides, bacteria use ribosomes to build chains of amino acids that are then folded by biosynthetic enzymes into a unique slip knot-like structure. Through this process, thousands of different lasso peptides are generated, many of which have demonstrated antibacterial, antiviral, and anticancer properties.

These Tiny Robots Can Swarm, Adapt, and Heal Themselves

Scientists designed microrobots that use sound to swarm, adapt, and heal themselves — working together like a living organism. The discovery could transform medicine, environmental cleanup, and robotics.

Nature’s Blueprint for Robot Swarms

Animals such as bats, whales, and insects have long relied on sound to communicate and find their way. Drawing inspiration from this, an international group of scientists has developed a model for tiny robots that use sound waves to move and work together in large, coordinated swarms that behave almost intelligently. According to team leader Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, these robotic collectives could eventually take on challenging missions like exploring disaster areas, cleaning polluted environments, or performing medical procedures inside the human body.

Schellman AI Summit 2025 · Luma

Join Adam Perella and I at the Schellman AI Summit on November 18th, 2025 at Schellman HQ in Tampa Florida.

Your AI doesn’t just use data; it consumes it like a hungry teenager at a buffet.

This creates a problem when the same AI system operating across multiple regulatory jurisdictions is subject to conflicting legal requirements. Imagine your organization trains your AI in California, deploys it in Dublin, and serves users globally.

This means that you operate in multiple jurisdictions, each demanding different regulatory requirements from your organization.

Welcome to the fragmentation of cross-border AI governance, where over 1,000 state AI bills introduced in 2025 meet the EU’s comprehensive regulatory framework, creating headaches for businesses operating internationally.

As compliance and attestation leaders, we’re well-positioned to offer advice on how to face this challenge as you establish your AI governance roadmap.

Cross-border AI accountability isn’t going away; it’s only accelerating. The companies that thrive will be those that treat regulatory complexity as a competitive advantage, not a compliance burden.

3D-printed microrobots adapt to diverse environments with modular design

Microrobots, small robotic systems that are less than 1 centimeter (cm) in size, could tackle some real-world tasks that cannot be completed by bigger robots. For instance, they could be used to monitor confined spaces and remote natural environments, to deliver drugs or to diagnose diseases or other medical conditions.

Researchers at Seoul National University recently introduced new modular and durable microrobots that can adapt to their surroundings, effectively navigating a range of environments. These , introduced in a paper published in Advanced Materials, can be fabricated using 3D .

“Microrobots, with their insect-like size, are expected to make contributions in fields where conventional robots have struggled to operate,” Won Jun Song, first author of the paper, told Tech Xplore. “However, most microrobots developed to date have been highly specialized, tailored for very specific purposes, making them difficult to deploy across diverse environments and applications. Our goal was to present a new approach toward creating general-purpose microrobots.”

/* */