Toggle light / dark theme

EXLUMINA Founder: SpaceX Already Controls the Future of Space AI

SpaceX is well-positioned to dominate the future of space AI due to its innovative technologies, scalable satellite production, and strategic partnerships, which will enable it to efficiently deploy and operate a massive network of satellites with advanced computing capabilities ## ## Questions to inspire discussion.

Launch Economics & Infrastructure.

🚀 Q: Why is Starship essential for space AI data centers? A: Starship enables 100-1000x more satellites than Falcon 9, making orbital AI economically viable through massive scaling and lower launch costs, while Falcon 9 remains too expensive for commercial viability at scale.

đŸ›°ïž Q: What is SpaceX’s deployment plan for AI satellites? A: SpaceX plans Starlink version 3 satellites with 100 Nvidia chips each, deploying 5,000 satellites via 100 Starship launches at 50 satellites per flight to create a gigawatt-scale AI constellation by early 2030s.

📈 Q: What launch cadence gives SpaceX its advantage? A: SpaceX plans 10,000 annual launches and produces satellites at 10-100x the level of competitors, creating a monopoly on launch and manufacturing that positions them as the gatekeeper to space AI success.

Energy & Power Systems.

Underwater robots inspired by nature are making progress, but hurdles remain

Underwater robots face many challenges before they can truly master the deep, such as stability in choppy currents. A new paper published in the journal npj Robotics provides a comprehensive update of where the technology stands today, including significant progress inspired by the movement of rays.

Underwater robots are not a gimmick. We need them to help us explore the roughly 74% of the ocean floor that still remains a mystery. While satellites, buoys and imaging technology can map the surface and the upper reaches of the ocean, we need underwater drones to explore and gather data from the hidden depths.

Physics of foam strangely resembles AI training

Foams are everywhere: soap suds, shaving cream, whipped toppings and food emulsions like mayonnaise. For decades, scientists believed that foams behave like glass, their microscopic components trapped in static, disordered configurations.

Now, engineers at the University of Pennsylvania have found that foams actually flow ceaselessly inside while holding their external shape. More strangely, from a mathematical perspective, this internal motion resembles the process of deep learning, the method typically used to train modern AI systems.

The discovery could hint that learning, in a broad mathematical sense, may be a common organizing principle across physical, biological and computational systems, and provide a conceptual foundation for future efforts to design adaptive materials. The insight could also shed new light on biological structures that continuously rearrange themselves, like the scaffolding in living cells.

Sony AI patent will see PlayStation games play themselves when players are stuck

The AI-generated Ghost Player system appears to be an evolution of the PS5 Game Help system, which was launched alongside the PlayStation [11,413 articles] href=https://www.videogameschronicle.com/platforms/playstation/ PlayStation fans who enjoy hunting trophies, due to the convenience of not having to call up a separate guide on another screen, such as a phone.

It is worth noting that there is no evidence that Sony has plans to use this technology in future hardware, and that patents like this have been filed by the firm, and many others, for years without any intention for use.

AI and high-throughput testing reveal stability limits in organic redox flow batteries

In numerous scientific fields, high-throughput experimentation methods combined with artificial intelligence (AI) show great promise to accelerate innovation and scientific discovery.

Case in point: In just five months, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory used robotics, automation and AI to conduct more than 6,000 experiments on chemicals in a type of rechargeable energy storage called organic redox flow batteries (RFBs). Such a monumental effort would have taken five to eight years with traditional experimentation.

Organic RFBs use carbon-based—that is, organic—molecules instead of traditional metal ions. Through their work, the researchers made a crucial finding about these batteries: A fundamental barrier at the molecular level limits their stability. The insight is expected to inspire exciting new directions in battery chemical research.

Ray Dalio: AI Is Accelerating the Collapse — Most People Aren’t Ready for What’s Next

With rapid advancements in AI and automation, individuals must prepare for a potentially unstable future by building financial strength, adapting to change, and rethinking traditional economic policies to avoid societal collapse ## ## Questions to inspire discussion.

Financial Preparation.

💰 Q: How should I structure my finances to build wealth? A: Focus on the fundamental equation: earn minus spend equals save, then invest that saved amount wisely to determine your financial success, as this simple formula is the foundation of building financial strength.

🏃 Q: When should I consider relocating geographically? A: Evaluate your location during major financial shifts and changing world orders, as the ability to move to better places and away from bad places has been historically important for protecting wealth and opportunity.

Career Strategy.

🎯 Q: How do I choose a career that maximizes financial success? A: Select careers that align with your passions while understanding their financial implications, since the work you do will directly impact your financial success during economic transitions.

/* */