Toggle light / dark theme

Peter voss is a serial entrepreneur, engineer, inventor and a pioneer in artificial intelligence.

Peter started out in electronics engineering but quickly moved into software. After developing a comprehensive ERP software package, Peter took his first software company from a zero to 400-person IPO in seven years.

Fueled by the fragile nature of software, Peter embarked on a 20-year journey to study intelligence (how it develops in humans, how to measure it, and current AI efforts), and to replicate it in software. His research culminated in the creation of a natural language intelligence engine that can think, learn, and reason — and adapt to and grow with the user. He even coined the term ‘AGI’(Artificial General Intelligence) with fellow luminaries in the space.

Peter founded SmartAction.ai in 2009, which developed the first AGI-based call center automation technology. Now, in his latest venture, Aigo.ai, he is taking that technology a step further with the commercialization of the second generation of his ‘Conversational AI’ technology with a bold mission of providing hyper-intelligent hyper-personal assistants for everyone.

In addition to being an entrepreneur, engineer, inventor, and AI pioneer, Peter often writes and presents on various philosophical topics including rational ethics, free will, and artificial minds; and is deeply involved with futurism and radical life-extension.

Church of Perpetual Life, a science-based church is open to people of all faiths & belief systems. We are non-denominational & non-judgmental and a central gathering place of Transhumans. What unites us is our common faith, belief, and desire in Unlimited Life Spans.

Besides biological immortality, there is also the possibility of digital immortality. The Human Connectome Project launched in 2010 aimed at mapping the entire human brain and to build its “network map” (connectome) to connect its structure to function and behaviour. Once the neural structure of the brain is completely deciphered, the mind can be uploaded into a computer that could control a robot that replicates a human in every respect.


The quest for eternal life is as old as humanity itself. “Grant us liberation from death for the sake of immortality, as the cucumber is severed from its bondage to the creeper”, runs one of the ancient Hindu prayers in the Mahamrityunjay, or the “great death-conquering” mantra. Death is the ultimate end, mysterious and terrible, against which even the strongest is powerless.

How to conquer death is a question every civilisation has tried to address. Myths have grown around immortal beings like gods in every culture, and of valiant but futile attempts of mortal men to attain immortality. But science may be closer to finding an answer to this ancient quest now more than ever before. In the early history of life, unicellular organisms like prokaryotes, protozoans and algae had ageless bodies and were immortal.

The advent of sexual reproduction boosted our chances of survival manifold. It also brought about ageing and death about a billion years ago. But Nature provides examples of immortality: a bacteria does not die naturally unless killed by an antibiotic or UV ray, strawberry plants clone themselves, and the tiny hydrozoans regenerate themselves to defy ageing and death. Cancer cells are also potentially immortal. But first let us be clear about the concept of immortality, which means defying death in order to live forever. But actually, what is ‘forever’? Around 1900, the average life expectancy in the world was only 31 years.

Read more

A team of scientists from the University of Maryland recently came up with a take on the hyperdimensional computing theory that could give robots memories and reflexes. This could break the stalemate we seem to be at with autonomous vehicles and other real-world robots, and lead to more human-like AI models.

The solution

The Maryland team came up with a theoretical method by which hyperdimensional computing – a hypervector-based alternative to computations based on Booleans and numbers – could replace current deep learning methods for processing sensory information.

Read more

A.I. is yet to prove the safety of self-driving cars.


“Shortly following the accident, we informed the National Highway Traffic Safety Administration and the National Transportation Safety Board that the vehicle’s logs showed that Autopilot was first engaged by the driver just 10 seconds prior to the accident, and then the driver immediately removed his hands from the wheel,” a Tesla spokesperson told The Register in an emailed statement. “Autopilot had not been used at any other time during that drive. We are deeply saddened by this accident and our thoughts are with everyone affected by this tragedy.”

Read more

To navigate dynamic environments, autonomous vehicles (AVs) should be able to process all information available to them and use it to generate effective driving strategies. Researchers at the University of California, Berkeley, have recently proposed a social perception scheme for planning the behavior of autonomous cars, which could help to develop AVs that are better equipped to deal with uncertainty in their surrounding environment.

“My research has focused on how to design human-like driving behaviors for autonomous cars,” Liting Sun, one of the researchers who carried out the study, told TechXplore. “Our goal is to build AVs that do not only understand , but also perform in a similar way in multiple aspects, including , reasoning and action.”

Sun and her colleagues observed that human drivers tend to treat other vehicles as dynamic obstacles, often inferring additional information from their behavior on the road. This information is generally occluded environment information or physically undetectable social information.

Read more

A groundbreaking project to tackle one of the world’s most pressing and complex health challenges—antimicrobial resistance (AMR)—has secured a $1 million boost. UTS will lead a consortium of 26 researchers from 14 organisations in the development of an AMR ‘knowledge engine’ capable of predicting outbreaks and informing interventions, supported by a grant from the Medical Research Future Fund.

“AMR is not a simple problem confined to health and hospital settings,” explains project Chief Investigator, UTS Professor of Infectious Disease Steven Djordjevic. “Our pets and livestock rely on many of these same medicines, so they find their way into the food chain and into the environment through animal faeces.”

If left unchecked, AMR is forecast to cause 10 million deaths annually by 2050, and add a US$100 trillion burden to worldwide.

Read more