Toggle light / dark theme

A diagrammatic explanation of how machine consciousness might be feasible.


About 20 years ago I gave my first talk on how to achieve consciousness in machines, at a World Future Society conference, and went on to discuss how we would co-evolve with machines. I’ve lectured on machine consciousness hundreds of times but never produced any clear slides that explain my ideas properly. I thought it was about time I did. My belief is that today’s deep neural networks using feed-forward processing with back propagation training can not become conscious. No digital algorithmic neural network can, even though they can certainly produce extremely good levels of artificial intelligence. By contrast, nature also uses neurons but does produce conscious machines such as humans easily. I think the key difference is not just that nature uses analog adaptive neural nets rather than digital processing (as I believe Hans Moravec first insighted, a view that I readily accepted) but also that nature uses large groups of these analog neurons that incorporate feedback loops that act both as a sort of short term memory and provide time to sense the sensing process as it happens, a mechanism that can explain consciousness. That feedback is critically important in the emergence of consciousness IMHO. I believe that if the neural network AI people stop barking up the barren back-prop tree and start climbing the feedback tree, we could have conscious machines in no time, but Moravec is still probably right that these need to be analog to enable true real-time processing as opposed to simulation of that.

I may be talking nonsense of course, but here are my thoughts, finally explained as simply and clearly as I can. These slides illustrate only the simplest forms of consciousness. Obviously our brains are highly complex and evolved many higher level architectures, control systems, complex senses and communication, but I think the basic foundations of biomimetic machine consciousness can be achieved as follows:

“This, of course, will deepen scientific and technological cooperation at the experts’ level in many areas, including but not limited to, advanced material sources. We are talking here of biotechnology, nanotechnology, data analysis, artificial intelligence, space technology, innovation policy,” Hernandez said.


By Genalyn Kabiling and Argyll Cyrus Geducos

Seoul, South Korea — The country’s vibrant relations with South Korea are expected to be strengthened with the planned cooperation accords on transportation safety, technological development, port expansion, and revitalized trade during President Duterte’s official visit.

SOUTH KOREA VISIT – President Duterte arrives at Incheon International Airport in Seoul, South Korea, Sunday. It is the President’s first official visit to that country. (Malacañang photo)

Update from a space robot rolling around Mars!


Sols 5073–5102

Opportunity continued exploring the south trough of Perseverance in May, still looking for evidence that explains just how this one-of-a-kind valley meandering through Endeavour Crater’s rim formed, and, along the way, helped the Mars Exploration Rover (MER) mission chalk up yet another first, linking with three relay orbiters in one Martian day or sol to send a pipeline of data home.

Read more

Creators of science fiction and fantasy books, films, and TV shows present stories of possible or imaginary worlds – and their presentations can range from the realistic to the fantastical. When we watch Westworld (and viewership is growing, with the season one finale drawing 2.2 million viewers ), we look forward 30 years into a potential future envisioned by its writers. Returning to the notion of reality and fantasy (or fact and fiction), the extent to which a sci-fi film might be descriptive of the future seems to be anybody’s guess.

However, we can actually get a sense of how reasonable the picture of the future that is being presented to us is if we consider it in terms of its pieces – particularly the technologies it presents. To consider the feasibility of the fascinating tools and other inventions depicted in these currently fictitious scenarios is, in some manner, to look through a window into the future. In a more functional sense, considering the show’s technology allows us a way to understand it in a broader cultural and historical context (as well as to better understand the possible future developments of these technologies through a fictional example).

Here are five key technologies from Westworld that are not AI, along with a sense of how close we are to actually having these seemingly “space-age” technologies available.

Read more

There is no doubt that artificial general intelligence (AGI) — an AI that is capable of generating human-level intelligence — is on its way. It’s only a matter a when, not if. According to some researchers, the quest to developing AGI may take longer than expected. But even then, the quest continues on.


How we treat robots in the future may significantly rely on how we expose children to artificially intelligent supertoys today.

Read more

A glimpse of life in the next decade.


Increasing automation has become a sticking point alongside other issues that could see workers bring city to a standstill.

in Las Vegas.

Sun 3 Jun 2018 10.23 EDT First published on Sat 2 Jun 2018 13.05 EDT.

Ryan Weed Positron Dynamics.

Current state of the art in-space propulsion systems based on chemical or ion propellants fail to meet requirements of 21st century space missions. Antimatter is a candidate mechanism for a propulsion system that could transport humans and/or robotic systems with drastically reduced transit times, providing quicker scientific results, increasing the payload mass to allow more capable instruments and larger crews, and reducing the overall mission cost. Unfortunately, previous propulsion concepts relied on unrealistic amounts of trapped antimatter — orders of magnitude away from any near-term capability. The goal of this effort is to determine the feasibility of a (TRL 1–2) radioisotope positron catalyzed fusion propulsion concept that does not rely on trapped antimatter. Such a transformative technology inspires and drives further innovation within the aerospace community and can be applied to a relevant mission — the bulk retrieval of an entire asteroid into translunar space — a mission of great scientific and commercial interest (e.g. asteroid mining). The idea of harnessing resources from asteroids goes back more than a century to Tsiolkovsky. Fundamentally, for asteroid mining to become financially viable, the cost of the retrieval spacecraft must be less than the value gained from the asteroid. Therefore, developing technology (e.g. efficient propulsion systems) that decreases the mass and complexity of the retrieval spacecraft must be a priority.

Editor: Loura Hall

Read more

Google ends Pentagon contract to develop AI for recognising people in drone videos after 4,000 employees signed an open letter saying that Google’s involvement is against the company’s “moral and ethical responsibility”.


Google will not seek another contract for its controversial work providing artificial intelligence to the U.S. Department of Defense for analyzing drone footage after its current contract expires.

Google Cloud CEO Diane Greene announced the decision at a meeting with employees Friday morning, three sources told Gizmodo. The current contract expires in 2019 and there will not be a follow-up contract, Greene said. The meeting, dubbed Weather Report, is a weekly update on Google Cloud’s business.

Google would not choose to pursue Maven today because the backlash has been terrible for the company, Greene said, adding that the decision was made at a time when Google was more aggressively pursuing military work. The company plans to unveil new ethical principles about its use of AI next week. A Google spokesperson did not immediately respond to questions about Greene’s comments.